

UCRL-MA-140943

UCRL-MA-140943-revised

ParaDyn User Manual

ParaDyn: A Parallel Nonlinear Explicit,
Three-Dimensional Finite-Element

Code for Solid and Structural Mechanics

Carol G. Hoover, Anthony J. De Groot, Robert J. Sherwood

Methods Development Group
Mechanical Engineering

ParaDyn Versions 2.1/4.1
January 2004

Abstract

2

Version 2.1/4.1

ParaDyn User Manual

ABSTRACT

ParaDyn is a parallel version of the DYNA3D computer program, a three-dimensional explicit

finite-element program for analyzing the dynamic response of solids and structures. The ParaDyn

program has been used as a production tool for several years for analyzing problems which range

in size from a few tens of thousands of elements to several million elements. ParaDyn runs on

parallel computers provided by the Department of Energy Advanced Simulation and Computing

(ASC) Program, the Department of Defense High Performance Computing and Modernization

Program, and the Atomic Weapons Establishment in the UK. In addition to these massively parallel

computers, ParaDyn has recently been installed on several Linux cluster computers.

Preprocessing and post-processing software utilities and tools are designed to facilitate the

generation of partitioned domains for processors on a massively parallel computer and the

visualization of both resultant data and boundary data generated in a parallel simulation. This

manual provides a brief overview of the parallel implementation; describes techniques for running

the ParaDyn program, tools and utilities; and provides examples of parallel simulations.

ParaDyn User Manual Preface

3

Version 2.1/4.1

PREFACE

Preface to Version 2.1/4.1

Message-passing versions of contact types 3, 5, 8, 9, and 10 are new in ParaDyn Version 4.1. These

algorithms augment the local contact algorithms (types 1, 2, 3, 5, 6, 7, 8, 9, and 10) which place

each contact interface into one processor. The new message-passing versions of local contact

remove the limitation on processor count encountered when the largest local contact surface

prevented further partitioning for more processors.

The significant milestone for Version 2.1 of ParaDyn is the release of highly optimized parallel

automatic contact algorithms. These parallel automatic contact algorithms incorporate dynamic

load balancing and include penalty contact, Lagrange contact and SAND (material erosion)

algorithms.

The parallel algorithms in Versions 2.1 and 4.1 were designed for ParaDyn and DynaPart by Tony

De Groot and developed by De Groot in ParaDyn and Bob Sherwood in the set of programs run by

DynaPart.

The heightened interest and yearly assessments in Software Quality Assurance Processes and

Practices have influenced our activities in this area. Software configuration management practices

now include a split of the source code into two branches. The production version is characterized

by carefully controlled changes to the source, limited to error corrections. The development version

is the code-development source and incorporates new algorithms and modifications to existing

capabilities. The development version plus alpha and beta testing then lead to a new production

version. The version labels in this document refer to the production version of the ParaDyn

software. The first two numbers in the version label represent the year of the release, measured

from year 2000, and the number of the release within that year. Version 2.1 was released in 2002

and is the first (and only) release made in 2002.

Software Testing with defined alpha and beta testing periods was applied to Version 4.1, released

in early 2004.

Analysts contribute significantly to the specification of new requirements, alpha/beta testing, and

collaborating on the reporting and corrections of errors. We especially thank analysts in the

Advanced Engineering Analysis Group at Lawrence Livermore National Laboratory (LLNL) and

ParaDyn User Manual Preface

4

Version 2.1/4.1

Ed Kokko at Livermore. Neil Hodge from the AEAG has provided the first beta testing of the VisIt

parallel visualization tool. Thanks very much Neil! We also thank all of our collaborators, the

Engineering Analysis Group at Los Alamos National Laboratory (Scott Doebbling and Bob

Stevens) and Photios Papados and Jim O’Daniel, at the Department of Defense Engineer Research

and Development Center (ERDC).

Preface to Version 1.0

This User Manual documents the collaborative code development work with my colleagues, Tony

De Groot and Bob Sherwood. Our efforts represent the majority of the original work in the parallel

algorithm design and development for the ParaDyn Project. Doug Speck, Elsie Pierce, and Vic

Castillo are now substantive contributors to the ParaDyn Project. Doug and Elsie, in particular,

have made it possible to quickly design flexible binary databases (Mili) and have developed

significant enhancements to the GRIZ visualization software. Their work paves the way for the

visualization capabilities needed when using parallel computers with hundreds and thousands of

processors.

Analysts provide the insights needed to turn our software development into an effective production

tool for finite-element engineering analysis. At the Lawrence Livermore National Laboratory

(LLNL) Dan Badders, Tony Lee, and Tony DePiero entered the turbulent waters of massively

parallel computers earliest and have provided very valued input to our code development efforts.

Raju Namburu and Photios Papados are collaborators from the Army Research Laboratory (ARL)

and the Engineer Research and Development Center (ERDC). They led the way to the first

multimillion element calculations on Department of Defense high performance computers. John

Benner and colleagues from the Los Alamos National Laboratory (LANL) were the first to use the

ParaDyn program on over 1000 processors.

We especially appreciate the very valuable comments and support that our collaborators from ARL,

ERDC, and LANL have provided for our code development efforts.

Carol Hoover

Methods Development Group

Lawrence Livermore National Laboratory

Livermore, California 94550

925-422-1556 hoover1@llnl.gov

ParaDyn User Manual Table of Contents

5

Version 2.1/4.1

TABLE OF CONTENTS

ABSTRACT ... 2

PREFACE .. 3

1.0 BACKGROUND ... 7

2.0 OVERVIEW OF PARADYN ... 9

2.1 Introduction ... 9

2.2 The Parallel Finite-Element Model ... 11

2.3 Parallel Performance and Scalability .. 14

2.4 Scalable Parallel Contact Algorithms ... 15
Parallel Local Contact .. 17
Parallel Automatic Contact .. 18
Modeling Tips for Efficient Parallel Contact ... 20

2.5 Boundary Conditions and Constraints .. 21

2.6 Testing and Evaluating Model Scalability .. 22
Speedup Studies and Scalability Limit .. 22
Using Statistics from the Partitioning Software 24

3.0 ANALYSIS WITH PARADYN ... 26

3.1 The ParaDyn Software Suite ... 26

3.2 PATH Variable for Accessing ParaDyn Software 28

3.3 Partitioning a Model .. 29

3.4 File Name Sequences .. 33

3.5 ParaDyn Execute Line Options ... 35

3.6 Running ParaDyn Interactively ... 37
Running ParaDyn on an IBM system .. 37
Running ParaDyn on an Intel Linux Cluster .. 38
Running ParaDyn on an SGI Origin .. 38
Running ParaDyn on a Compaq at LANL ... 39

ParaDyn User Manual Table of Contents

6

Version 2.1/4.1

3.7 Running ParaDyn with Batch .. 39

3.8 Visualizing ParaDyn Results ... 41
Selecting Mili Databases with Keyword Input 41
Combining Parallel Databases and Visualizing Results with GRIZ4 42
Visualizing Results with VisIt ... 43
Visualizing Results with EnSight .. 44

3.9 A Summary of Steps for Running ParaDyn Simulations 44

4.0 INPUT FOR PARALLEL SIMULATIONS ... 46

4.1 Tips for Designing Models with Efficient Parallel Contact 46

4.2 The NIKE–DYNA Link File ... 48

4.3 Multiple Versions of Running Restart Files .. 49

4.4 Nodal Force Output ... 51

5.0 FUTURE ENHANCEMENTS .. 53

REFERENCES ... 54

DynaPart Command Line and Keywords .. 55
DynaPart Log File .. 68
Generating Good Partitions with DynaPart ... 80

MANUAL CHANGE HISTORY .. 84

ParaDyn User Manual Background

7

Version 2.1/4.1

1.0 BACKGROUND

Significant speed gains (for example, factors of sixty or more on sixty-four processors) are being

achieved for engineering design calculations on parallel computers with as few as a hundred

processors using ParaDyn, the parallel version of the DYNA3D program [1]. The latest massively

parallel computers with thousands of processors now make it possible to design engineering

models for mechanical system analysis with multiple component parts as well as to add more detail

and complexity in the models for components. ParaDyn and DYNA3D are explicit finite-element

programs designed to solve for the nonlinear, transient response of solids and structures. The two

programs, contained within a single source, are developed by the Methods Development Group at

the Lawrence Livermore National Laboratory (LLNL). The web site, http://www.llnl.gov/eng/

mdg/mdg_home.html, provides general information and online documentation about the complete

family of thermomechanical programs developed in the Methods Development Group.

Parallel computers are now commonplace in our computing environment. Computers with speeds

ranging from 1 to 100 TeraOps (10

12

to 10

14

 operations per second) and thousands of processors

will be delivered through the year 2005 to the Advanced Simulation and Computing (ASC)

Program. These computers dominate the high-end computing at LLNL. Complementing these

resources, the Livermore Laboratory is making a significant investment in distributed-memory

Linux clusters. These systems are characterized by off-the shelf processors (such as the Intel Xeon

processors) with an interconnect network. The performance of ParaDyn on these systems depends

very much on the balance between processor speeds and the speed of the interconnect network. A

summary of the computer services and resources at LLNL may be viewed at http://www.llnl.gov/

icc/lc.

The Department of Defense High Performance Computing and Modernization Program is also a

very strong participant in acquiring hardware and developing software for next-generation

massively parallel computers. Computer characteristics in terms of size, speed, and number of

processors at the DOD Major Shared Resource Centers (MSRCs) are summarized in the links

provided by the Program Office web site at http://www.hpcmo.hpc.mil. These data illustrate the

continuing significant increase in our parallel computational speeds and capacities.

ParaDyn is a parallel production program. Code development efforts are now directed toward

optimizing the parallel algorithms, developing parallel preprocessing and post-processing

software, and developing software tools for engineering optimization studies. Concurrent with the

http://www.llnl.gov/asci/platforms
http://www.llnl.gov/asci/platforms
http://www.hpcmo.hpc.mil
http://www.llnl.gov/asci/platforms
http://www.llnl.gov/asci/platforms
http://www.llnl.gov/asci/platforms
http://www.hpcmo.hpc.mil

ParaDyn User Manual Background

8

Version 2.1/4.1

parallel development effort, many code developers for the DYNA3D program are contributing new

algorithms, elements, and material models to enhance the mechanics modeling capabilities. A

single source encompassing both the ParaDyn and DYNA3D algorithms makes it possible to easily

migrate the DYNA3D enhancements into the production ParaDyn program. Finally, coupled

programs for thermal, mechanical, and fluid analysis are being designed for parallel computers. A

production capability for coupled analysis is possible in the next few years.

ParaDyn User Manual Introduction

9

Version 2.1/4.1

2.0 OVERVIEW OF PARADYN

2.1 Introduction

Advances in the development of parallel algorithms for explicit finite-element analysis and domain

partitioning techniques have led to scalable production applications using ParaDyn. This has

resulted in several benefits to our engineering design programs. Firstly, calculations are now

performed in a day or less for problems that previously ran over several weeks. Secondly, new

models are being generated for mesh sizes between one-million and ten-million elements. This is

an order of magnitude larger than the largest models possible in the past. Finally, longer time

simulations (problems running for a few million steps) are now being run on both massively

parallel computers and Linux clusters.

Analysts play an important role in preparing models for parallel computers. The meshes are

increasingly much larger and more complex. New validation tools are needed for the mesh

generation step, specification of boundary loads and constraints, and defining facets on interfaces.

In addition, the modeling of contact interfaces can have a significant effect on the parallel

performance and scalability. Optimizing the performance and achieving scalability of parallel

contact algorithms is particularly challenging and has been the focus of algorithm research in

ParaDyn in the last several years. An overview of the parallel contact algorithms is presented in

Section 2.4.

ParaDyn is a production program and includes a suite of software for automating the preparation

of models and the analysis of results. The DynaPart preprocessing tool automates the task of model

partitioning and is coupled directly to the research in scalable parallel contact algorithms developed

in the ParaDyn program. The development of the GRIZ4 visualization tool [2] based on the Mili

(Mesh I/O Library) software [3] provides a flexible, self-defining format to use for the large

databases generated during a parallel simulation. Another recent advance which provides

additional analysis tools has been the development of routines for reading families of Mili

databases generated in parallel simulations. These routines have been implemented in VisIt, the

parallel visualization tool developed by the ASC Program at Livermore and also in EnSight, a

commercial parallel visualization tool supported by the ASC Program and used at Los Alamos.

The ParaDyn software suite consists of the following software products:

ParaDyn User Manual Introduction

10

Version 2.1/4.1

• DynaPart, a partitioning tool for the spatial decomposition of the model input data;

• DYNA3D, a nonlinear, explicit, three-dimensional finite-element code for modeling the

dynamics of solids and structures;

• ParaDyn, the parallel version of the DYNA3D program;

• Mili, an Input/Output (I/O) subroutine library for formatting binary databases used in

finite-element computer programs;

• Xmilics, a tool for combining and splitting families of Mili databases created on a par-

allel computer;

• GRIZ4, a visualization tool for post-processing results.

There are two additional parallel visualization tools that have been used for visualizing results in

Mili databases from ParaDyn. These are:

• VisIt, a parallel visualization tool for post-processing results.

• EnSight, a commercial parallel visualization tool used by analysts at Los Alamos.

VisIt is currently undergoing beta testing with the Mili databases generated on parallel computers

at LLNL.

For installations where the ParaDyn software suite is available, all of the documentation is in PDF

form and stored in directories with the executables and related libraries. Other individuals or

groups interested in the capabilities of the software developed by the Methods Development Group

(MDG) can access documentation on the MDG Home page. The Home page web address is http:/

/www.llnl.gov/eng/mdg/mdg_home.html. The VisIt software includes PDF documentation and

instructions for downloading the software. The Home page for VisIt is http://www.llnl.gov/visit.

To prepare input data and select control options and flags for the ParaDyn program, follow the

discussions in the DYNA3D User Manual [1]. Use Section 3 in this manual to follow the steps

needed to partition a model, run the problem on a parallel computer, and use the post-processing

tools for analyzing the results. Instructions for using the DynaPart preprocessing software are

outlined in Section 3 and discussed in depth in the Appendices. The Xmilics tool is discussed in

Section 3 and a Help package is displayed interactively by using the execute line with no

arguments. The post-processing software is documented in the GRIZ4 User Manual. Finally, some

standard features in DYNA3D requiring additional documentation for a parallel analysis are

included in Section 4 of this manual.

http://www.hpcmo.hpc.mil

ParaDyn User Manual The Parallel Finite-Element Model

11

Version 2.1/4.1

A set of typeface conventions is followed throughout this manual to allow the reader to easily

distinguish between

commands

,

parameters

, and

computer

generated

text

.

Commands

that

appear in

bold

 type should be entered verbatim.

Parameters

 that appear in

italic

type should

be given values when included in the input.

Computer

generated

text

, such as error

messages or default file names, is printed in a

typewriter-like (Courier)

 font. In text

passages file names appear in italic type for clarity.

The next sections provide introductory discussions about parallel algorithms and computers.

Section 2.2 discusses the parallel finite-element model and describes partitioning methods. Section

2.3 discusses parallel performance and scalability measurements. Section 2.4 characterizes contact

interfaces and their implementation in parallel. Section 2.5 lists boundary conditions and other

options which are given special treatment by the partitioning software. Section 2.6 discusses

scalability studies for different models and parallel computers.

2.2 The Parallel Finite-Element Model

A successful strategy for parallel implementation of the explicit finite-element method is based on

dividing the mesh among the processors and executing ParaDyn on a subdomain in each processor

[5]. The elements from the mesh are divided into subdomains so that each processor has

approximately the same amount of calculations to perform in a timestep. The nodes on the

boundaries of a subdomain are referred to as shared nodes. Nodal force data for shared nodes are

communicated between processors when the nodal force updates are calculated. The nodal points

on the subdomain boundaries areduplicated (shared) in more than one processor. Mesh partitioning

is the strategy for dividing the problem into subdomains and mapping subdomains to processors.

This is illustrated for two processors in Figure 1.

The nodal forces consist of contributions from applied loads, contact interactions, and internal

deformations.

F

node

 =

F

applied

 +

F

contact

−

F

internal

The internal force calculation for a shared node includes a contribution from elements in different

processors. Each processor calculates a partial nodal force for the elements in its processor. These

partial force contributions are communicated between the processors so that the total force

computed for a shared node is the same in all processors within the error introduced by the ordering

ParaDyn User Manual The Parallel Finite-Element Model

12

Version 2.1/4.1

of the calculations. As much as possible, the ParaDyn algorithms are designed to store partial nodal

force data for shared nodes until all contributions to the nodal force have been computed before

communicating the shared data.

Research in applied mathematics has led to efficient techniques for subdividing or partitioning the

complicated unstructured meshes that arise in practical engineering applications [6-9]. We use the

METIS software from the University of Minnesota to partition finite-element meshes and contact

surfaces. (For more information on METIS, see http://www-users.cs.umn.edu/~karypis/metis/

main.shtml). The METIS algorithms use a graph to represent the finite-element mesh.

Preprocessing software automatically produces the graphs needed for the mesh partitioning step.

Mesh partitioning is accomplished by representing a finite-element mesh as a graph. A graph has

vertices and interconnecting edges. The vertices and edges represent objects on the mesh. For

finite-element meshes, the vertices of the graph correspond to elements (zones) in the mesh and the

edges correspond to nodes in common between two connected elements. See Figure 2.

The graph represents the element-to-element connectivity for the mesh. The METIS algorithms

find an efficient division of the graph corresponding to a specified number of subdomains. An

important aspect of graph partitioning techniques is the use of weighting factors for both the

(a) (b)

Figure 1. Two subdomains on a finite-element mesh. (a) The original mesh with 48 elements
is partitioned into two subdomains with 24 elements each. (b) The calculations involving
nodal points on the cut plane (shown as patterned) are performed in both processors. The 15
nodes on the cut plane are referred to as shared nodes.

Processor 0

Processor 1

Subdomainsfinite-element
mesh

http://www-users.cs.umn.edu/~karypis/metis/main.shtml

ParaDyn User Manual The Parallel Finite-Element Model

13

Version 2.1/4.1

vertices and edges. These weighting factors are used to balance the vertices into sets of roughly

equal weight. This weighting of the graph provides the best representation of both the

computational costs and the communication costs for the partitioning of the mesh. To illustrate this,

the relative computational cost for a complex material model, a boundary condition or any other

expensive part of the calculation, can be used to weight the vertices. Similarly, an edge in the graph

represents the number of common nodes between the elements and can be appropriately weighted

by a relative measure of the shared data communicated if the graph is cut on that edge. Figure 2.(b)

indicates the edge weights used for the few elements shown in Figure 2.(a).

The partitioning task is automated completely in the preprocessing tool, DynaPart, for any mesh

geometry. This software was used for the assignment of a one-million element mesh to 128

processors as shown in Figure 3. The colors are used to show the processor assignment for

subdomains on the mesh. The mesh was developed to model a shock moving from the top vertex

of the mesh in the direction of the half-cylindrical cavity region located half way down and on the

left-hand side of the mesh. The mesh is zoned very finely at the top of the model to resolve the

(a) A simple finite-element mesh. (b) A graph of the finite-element mesh.

1 2 3

4 5

Figure 2. A finite-element mesh and the graph representation of the mesh. (a) This simple mesh
consists of two materials, shaded and unshaded. The shaded material requires twice as much
calculation time as the unshaded material. (b) This is the graph of the mesh. The vertices are
represented as circles and the number near a vertex is the computational weight of the vertex.
The lines connecting the vertices are edges and represent the shared data between the vertices.
The number specified along the edges represents the number of shared nodes between the two
elements represented by the vertices.

2

1 1 1

1

1
12

2

2 2
1 2 3

4 5

2

2

ParaDyn User Manual Parallel Performance and Scalability

14

Version 2.1/4.1

shock structure. As a result of this fine zoning the subdomains are much smaller at the top of the

mesh than the subdomains on the lower part of the mesh where the zoning is coarse. The mesh lines

are not shown in Figure 3.

.

2.3 Parallel Performance and Scalability

The time required to deliver results on a parallel computer is the sum of the time for computing

results on the processors and the time for communicating data between the processors.

where

 is the total elapsed time taken for the calculation (total wall clock time);

 is the elapsed time the processors spend computing results;

 is the elapsed time the processors spend communicating shared data.

Figure 3. Processor assignment for a one-million element mesh. Colors are used to
distinguish the subdomains assigned to 128 processors. This problem without sliding
interfaces scales linearly as the number of processors is increased up to roughly 1000
processors.

τwc τcalc τcomm+=

τwc
τcalc
τcomm

ParaDyn User Manual Scalable Parallel Contact Algorithms

15

Version 2.1/4.1

Ideally, if the number of processors is doubled, the rate for delivering results will be doubled. The

term

scalability

 or

theoretical scalability

 refers to this linear scaling of the delivery rate with the

number of processors. In practice scalability breaks down when the communication time becomes

significant compared to the amount of time processors spend computing results. Speedup curves

measure the calculation rate versus the processor count for specific computers. Examples are

shown in

If the parallel calculation is efficient, the delivery time , for processors will be

approximately equal to of the time for calculating the same results on one processor, .

Thus, a measure of the parallel efficiency is given by the following:

Almost all problems of interest include contact interface definitions which are always challenging

to run efficiently in parallel. See Section 2.4. One of the software programs in DynaPart (reducegrf)

calculates an estimate for the maximum number of processors that can be used for a ParaDyn

simulation based solely on balancing the computational work for

both

 the element deformation and

the contact calculations. Note that interprocessor communication time is ignored in this estimate.

Using more processors will result in no further improvement in delivering results and wastes

computing resources. On the other hand, an efficient calculation may be limited by the number of

processors even further for any specific hardware platform. In this case, hardware speeds, CPU and

network are taken into account. Section 2.6 illustrates this with examples.

2.4 Scalable Parallel Contact Algorithms

Designing efficient parallel contact algorithms is challenging for several reasons:

• A load balanced mesh partition may split a contact interface into many processors and

potentially cause a large amount of unnecessary communication of contact nodes and

facets.

• Communication may be necessary for parallel contact algorithms if the relative distance

moved by the two surfaces is more than one element length.

• For problems with moving parts, the material interfaces in contact change dynamically.

Search algorithms for finding interfaces in contact are relatively time consuming com-

pared to the contact enforcement or element deformation calculations.

τwc Np
1 N⁄ p τ1

ε τ1 Npτwc()⁄ 1× 00%.=

ParaDyn User Manual Scalable Parallel Contact Algorithms

16

Version 2.1/4.1

Because of these characteristics of the interface calculations, dividing the problem domain into

subdomains that are optimal for calculating the element deformations may not result in an efficient

division of the problem for the contact calculations. In some cases the ParaDyn software uses

partitioning methods for the sliding interfaces that differ from the partitioning for the mesh. As a

result the contact calculations are performed in a different set of processors than the element

calculations for connected elements. The contact force results are communicated once in a timestep

to the processors defined by the mesh partition. Similarly the nodal position and velocity updates

are communicated from the processors defined by the mesh partition to the processors defined by

the contact partitions once in a timestep.

There are currently two parallel contact algorithms in the ParaDyn program:

local contact

 and

arbitrary contact

. In some problems, surfaces initially close together engage in small relative

motion and the contact remains in a localized region of the mesh. We refer to this as

local contact.

Sliding interface types (1-3, 5-10) in DYNA3D/ParaDyn are local contact algorithms. For other

problems with many components and with large relative motion at the interfaces, the interactions

of the surfaces are not predictable. Thus, more sophisticated and time consuming searches for the

surfaces in contact must be performed throughout the simulation. We refer to this as arbitrary

contact. Examples illustrating arbitrary contact are a ball rolling on a plane, a surface folding on

itself, material fragmentation and failure, or an automobile crash simulation. Arbitrary contact is

implemented in DYNA3D automatic contact interfaces, types 12 through 14. The automatic

contact algorithm type 14 is the material erosion algorithm (SAND).

In ParaDyn Version 2.1 the parallel algorithm for local contact places a contact interface (both the

master surface and the slave segments or nodes) into one processor. This method is very efficient

and useful for problems with many contact surfaces that are relatively small. However, the method

can limit the scalability of the problem if there are large contact surfaces because the partitioning

for contact may require more elements in a processor than is efficient for an optimal mesh

partitioning. ParaDyn Version 4.1 removes this scalability limitation by splitting a local contact

interface over a group of processors instead of just one processor, if needed. This new feature

applies to local contact algorithms 3, 5, 8, 9, and 10.

The parallel arbitrary (automatic) contact algorithm uses a localization technique (a bucket search)

to search for contact points. The partitioning of arbitrary contact surfaces is a step separate from

the mesh partitioning. Thus, there are two distinct partitions of the model and there is

communication between the two partitions at each timestep. The parallel arbitrary contact

ParaDyn User Manual Scalable Parallel Contact Algorithms

17Version 2.1/4.1

algorithm also redistributes the contact surfaces over the processors if the surface motion results in

motion over a distance larger than one bucket length. This redistribution step is referred to as

dynamic load balancing.

Sliding interface type 11 (SAND) is not implemented in parallel because the equivalent interface

is modeled in the more robust and newer automatic contact interface type 14. The single-surface

contact algorithm in type 4 is implemented as a full surface assigned to a processor. Single surface

contact may also be modeled using interface type 13. Type 13 is a newer algorithm with more

features and for many problems it is preferable to type 4.

The most commonly used sliding interface in DYNA3D is type 3. The same physical interface

condition (sliding with friction and voids) can also be modeled with the automatic contact

algorithm types 12 and 13. The parallel efficiency for either choice for the sliding interface may

vary significantly depending on the details of the interfaces and the size of the model. The next

sections discuss the two forms of parallel contact algorithms.

2.4.1 Parallel Local Contact

In ParaDyn Version 2.1 DynaPart always places each local contact interface in one processor. In

ParaDyn Version 4.1 DynaPart will split up local contact interface types 3, 5, 8, 9, and 10 if the

largest contact surfaces limit the number of processors that can be used. The DynaPart keyword

localparallel must be used in ParaDyn Version 4.1 to enable the splitting of the local contact

surfaces.

For more than one local contact sliding interface, DynaPart distributes the set of interfaces among

as many processors as possible. Special graph weighting methods are used for partitioning the local

contact interfaces and evenly distributing the local contact calculations among processors.

A spin forming mesh illustrates the partitioning for local contact without the localparallel option

and is shown in Figure 4. This model consists of a rotating plate formed into a hemispherical shape

by rollers in contact with the plate surface. A four-processor partition for this problem cuts the plate

into three concentric rings. The center ring and brushes form the sliding interface and are fully

contained in one processor. An eight-processor partition for the problem cuts two of the rings in

half. The sliding interface, the center ring and the rollers, remains uncut.

ParaDyn User Manual Scalable Parallel Contact Algorithms

18Version 2.1/4.1

2.4.2 Parallel Automatic Contact

For arbitrary contact defined with sliding interface types 12-14, the analyst avoids the very time

consuming task of defining the contact surfaces in the model. However, the parallel algorithm for

these interface definitions is more expensive for two reasons. First, the search for contact is an

expensive step, both on single processor computers and on parallel computers. Furthermore, for

problems with considerable surface motion, the parallel versions of these algorithms require

additional data communication because the buckets on processor boundaries can be located in

multiple processors. A periodic surface rebucketing is needed (on serial and parallel computers) to

avoid missing contact points.

An example of arbitrary contact is shown in Figure 5. This is a material (shells) which is folding

as a result of six boundaries (on a cube) moving from the edge of the original square towards the

center.

The first step in the arbitrary contact algorithm is a sort step to localize the search for material

interfaces. The sort algorithm generates a set of buckets (cells) for grouping surface nodes and

facets into localized regions on the mesh. The parallel version of the algorithm partitions the

Figure 4. Four and eight-processor partitions for a spin forming problem. The model
partitioned for four processors divides the plate into three concentric rings. The eight-
processor partition leaves the middle ring uncut.

Four processors Eight processors

ParaDyn User Manual Scalable Parallel Contact Algorithms

19Version 2.1/4.1

buckets among the processors to balance the contact calculations among them and minimize the

communication of nodes and surface facets in buckets with data that must be shared between

processors.

An additional step is needed in the automatic contact algorithm when the surface motion results in

nodes and facets moving more than one bucket width. When this happens it is necessary to resort

the surfaces so that contact points are not missed. The frequency of this bucket-regeneration step

is automatically computed or, in some unusual situations, can be specified as a user input. In

a) A folding surface with an overlaid set of buckets for localizing the contact search

b) The folding surface at a later time with a new set of buckets for the contact search

Figure 5. The arbitrary contact algorithm is used for surfaces with unpredictable motion
such as this folding sheet of material. a) Buckets are used to localize the search for
contact. b) Once the surface moves more than the length of a bucket, the buckets must be
regenerated. New buckets may be of a different size and distribution than the original set
of buckets.

ParaDyn User Manual Scalable Parallel Contact Algorithms

20Version 2.1/4.1

ParaDyn the bucket-regeneration step also includes a partitioning of the buckets to load balance the

new set of buckets among the processors. The bucket regeneration and partitioning require extra

communication during the timestep over which it occurs. Thus, it is important to rebucket as

infrequently as possible to avoid the extra communication costs.

The efficiency of the parallel arbitrary contact can be improved by limiting the search domains with

the DYNA3D keyword input options listed in the section for contact algorithms. Sliding interface

types 12 and 13 are identical. The options for controlling the search domain and other features as

follows:

• Boxes can be defined to limit the domain of the search;

• Material can be included or excluded in the boxes for the search;

• Faces defined as in a type 3 interface can be specified rather than automatically gener-

ated.

Refer to Section 4.1 for a discussion of modeling tips for developing models that result in the most

efficient performance from the parallel contact algorithms.

2.4.3 Modeling Tips for Efficient Parallel Contact

Computational performance should increase if all contact surfaces are kept as small as possible. If

any contact surface can be defined as two or more independent smaller surfaces, this should be

done during mesh generation or with the use of DYNA3D keywords. For efficient parallel arbitrary

contact (automatic contact) it is very important to use DYNA3D input options to limit the search

domains.

Section 4.1 provides valuable modeling tips for all forms of parallel contact. It is very important to

read Section 4.1 before designing the contact for models that will be run using ParaDyn.

For a complex mesh it is beneficial to use both local and arbitrary contact algorithms and to provide

multiple instances for each type of contact. An obvious advantage in doing this is that the regions

on a mesh without any contact are not included in either the partitioning for local contact or the

search domains for arbitrary contact.

ParaDyn User Manual Boundary Conditions and Constraints

21Version 2.1/4.1

2.5 Boundary Conditions and Constraints

Parallel versions of boundary conditions and constraints are treated both in the partitioning

software as well as in ParaDyn. Because the partitioning software uses special processing on

selected boundary conditions and constraints, it is important to know which boundary conditions

and constraints are treated with partitioning and how this affects the overall partitioning.

The following DYNA3D options affect the partitioning by placing all associated nodes and

elements into one processor. The largest set of nodes for any of these features will limit the

maximum number of processors that can be used efficiently. It is therefore best to keep the size of

each set of these boundary conditions and constraints as small as possible.

Symmetry planes with failure

Follower forces

Nodal constraints

Sliding interface definitions:

Types 1 2 4 6 7 in Version 4.1

Types 1 through 10 for Version 2.1

Tie-breaking shell slidelines

Tied node sets with failure

Rigid body joints

Shell-solid interfaces

Discrete springs and dampers

One-dimensional slidelines.

These DYNA3D objects contain nodes and elements that must be assigned to a single processor

rather than divided across more than one processor. Nodes that need to be kept together are

assigned to Special Nodal Points (SNP) sets in the partitioning software. Associated with each of

the SNP sets is a Special Element (SE) set. The SE set consists of all elements that contain one or

more nodes in the corresponding SNP set. Each SNP set and its associated SE set must be fully

contained in a processor. As a result, large SNP or SE sets can constrain a mesh partitioning and

limit the number of processors that can be used for the problem.

ParaDyn User Manual Testing and Evaluating Model Scalability

22Version 2.1/4.1

2.6 Testing and Evaluating Model Scalability

If processors are readily available on the parallel computer, it is a good idea to partition the model

more than once in order to select an optimal number of processors to use for the simulation.

Selecting an optimal number of processors means you use as many processors as you can (and thus,

get the best turnaround for your results) and at the same time you run the parallel simulation

efficiently. The partitioning software provides statistics that allow you to make a reasonable

estimate for the number of processors to use for achieving a computational load balance. On the

other hand, it is not possible at the partitioning step to show that the communication time is

negligible compared to the calculation time.

Therefore, it is necessary to benchmark the ParaDyn performance with scalability studies for all

parallel machines that will be used and for the prototype models of interest. This step is not

necessary if other analysts have done this study already.

Tests using the current systems at LLNL have shown that processing speed increases with the

number of processors until the number of elements per processor drops below approximately 2000

to 4000. This estimate may be inadequate if contact surfaces, boundary conditions, or nodal

constraints are restricting the partitioning. The reason is that the optimization of the parallel

algorithms for these options constrains the nodal data to reside on one or a small number of

processors. See discussions in Sections 2.4 and 2.5. Finally, it is important to generate enough

points on the speedup curve to determine the number of processors at which the speedup curve

begins to deviate from the ideal linear speed up.

2.6.1 Speedup Studies and Scalability Limit

Speedup studies and the scalability limit are important to understand for any computer platform on

which ParaDyn is used. To generate a speedup curve, the wall clock time is measured as a function

of the number of processors. Then the rate of calculation is plotted as a function of the number of

processors. Perfect scalability or theoretical scalability means that the calculation rate is doubled

as the number of processors is doubled. Thus a perfectly scalable calculation is one with a straight

line at 45 degrees when the calculation rate is plotted as a function of processor count. In practical

problems a straight line behavior with a slope less than the theoretical scalability is sufficient and

usually indicates that communication time is affecting the rate at which processors receive data

needed to complete calculations for nodal data shared between processors.

ParaDyn User Manual Testing and Evaluating Model Scalability

23Version 2.1/4.1

a) Parallel speedup for a million-element problem with no contact surfaces

b) Parallel speedup for a 50,000-
element model with 27 contact
surfaces

c) Parallel speedup for 100,000-
element model with 30 contact surfaces
and 20,000 surface nodes

Figure 6. The speedup curves shown here are for older parallel computers, but the speedup
characteristics show that the balance between the CPU speeds and the interconnect speeds are
quite relevant to the performance of ParaDyn. a) This problem has a small percentage of the
nodes being communicated between processors. The curves stop at the maximum number of
processors available on the computer. Typically ParaDyn was run with the largest number of
processors available on these machines. b) These speedup curves show that load balance can
limit performance. The problem was run with 8 or 16 processors. c) A similar degradation in
load balance occurs here. The problem was run on 64 processors.

ParaDyn User Manual Testing and Evaluating Model Scalability

24Version 2.1/4.1

In ParaDyn timing values are printed in the standard output file (d3hsp) each time the problem

energy statistics are printed. These statistics are useful because they provide an indication of the

extra cost of a contact rebucketing timestep compared to a step without rebucketing. For the

speedup curves the final timing statistics measured for the problem and printed at the end of the

standard output file should be used to compute the calculation rate. This value at the end of the run

amortizes the differences in the time for timesteps with and without rebucketing for contact.

Speedup curves for problems with and without contact are illustrated in Figure 6.

The processor count at which there is a deviation from linearity in the speedup curve is usually

selected as the maximum number of processors for which the problem is scalable. For ParaDyn this

point on the speedup curve is often characterized by large and unpredictable communication times.

DynaPart programs collect statistics about the model objects that require splitting to maintain good

load balance and the statistics on the cut edges for each partition. From these data DynaPart

estimates and prints the processor count at the scalability limit and labels it “Max # partitions” (See

discussion in Section 2.6.2). This processor count is an estimate of the scalability limit to load

balance the calculations. It does not account for the hardware communication times and the balance

between the hardware CPU and interconnect communication times. It is for this reason that the

speedup curves should be studied for each platform on which ParaDyn is used.

2.6.2 Using Statistics from the Partitioning Software

After gaining an understanding of the performance characteristics of ParaDyn for specific parallel

platforms and prototypical models, it is possible to use statistics in the DynaPart log file as a guide

for selecting the number of processors.

Computational Load Balance:

The skmetis program in DynaPart calculates and prints statistics for evaluating the quality of the

partitioning with respect to the computational load balance among the processors. This output is

listed as the Load balance number from METIS. The best balance is obtained when this number is

as close as possible to a value of 1.00. The parallel speedup is given by the ratio of the number of

processors to the load balance. This assumes the communication time is negligible and the

deviation of the speedup from the ideal is due to the imbalance in the calculations across

processors.

The UNIX grep command shown below prints the line in the DynaPart log file containing the

computational load balance statistic.

ParaDyn User Manual Testing and Evaluating Model Scalability

25Version 2.1/4.1

grep “Load balance:” logfilename

Edge cuts: 1080, Load balance: 1.00000, Score: 1.55556.

Maximum Number of Processors Limited by Contact Surfaces and Other Model Options:

The partitioning of models particularly with slide surfaces may limit the number of processors that

can be used for an efficient ParaDyn simulation. See Sections 2.4 and 2.5. The DynaPart software

computes and prints a good estimate for the optimal number of processors to achieve

computational balance when these options are used in the model. The model can then be

repartitioned using the minimum of this value and the optimal the number of processors found on

the speedup curve. Use grep to get this statistic from the DynaPart log file as follows:

grep “Max # partitions” logfilename

Max # partitions for good load balance: 27

Balancing and Limiting Communication Time:

The load balancing of the computational work by Metis provides a very good estimate for the

achieved speedup with ParaDyn. However, it is not possible to develop an equivalent estimator for

the effect of the communication time on the scalability without running speedup tests with your

model on the parallel computer you are using. It is particularly important to do this for models

which have those features listed in Section 2.5.

ParaDyn User Manual The ParaDyn Software Suite

26Version 2.1/4.1

3.0 ANALYSIS WITH PARADYN

An important consideration in developing a parallel simulation capability is the requirement to

provide automated tools for partitioning complex finite-element meshes and for managing the

hundreds of files generated by a parallel simulation. The ParaDyn software suite includes

additional tools for these tasks. This section describes the ParaDyn software products and how to

use them.

Parallel simulations have become the best option for producing results for the largest and longest

running mechanics simulations and parallel resources are in high demand. Under these

circumstances it is very important to benchmark the speedup and scalability for prototypical

models and for the parallel computers being used. Once this is done, statistics are generated from

the ParaDyn partitioning software to make sure that there is a computational load balance among

the processors. Sections 2.3 through 2.6 discuss parallel performance, partitioning issues, speedup,

and scalability. Section 2.6 is required reading in order to use the partitioning software effectively

and develop efficient parallel models.

3.1 The ParaDyn Software Suite

The ParaDyn program is a message-passing version of the DYNA3D program. The input file for

ParaDyn is the same as the DYNA3D input file and can be prepared using the DYNA3D manual

and a mesh generator in the usual way. The term model used here includes the mesh, all of the initial

and boundary conditions, and the selected mechanics options; in other words, all of the data in the

input file. The steps for preparing and running a ParaDyn simulation are as follows:

Step 1. Mesh generation and model preparation.

Prepare your input using a mesh generator and the DYNA3D manual.

Step 2. Model Partitioning.

Divide the DYNA3D model into subdomains, one per processor.

Determine the optimal number of processors to use.

Step 3. ParaDyn Analysis.

Run the ParaDyn analysis.

Step 4. Combine the binary output databases for visualization (optional step).

ParaDyn User Manual The ParaDyn Software Suite

27Version 2.1/4.1

Combine the families of databases from each processor (subdomain) into a family

of files in a single database (full domain). This step is used only with the serial

visualization tool, GRIZ4S.

Step 5. Visualization.

Display results on the parallel computer or display results on a workstation.

Step 1 is the usual data preparation step for the problem. Step 2 is a preprocessing step for model

partitioning and this step is automated with a script file, DynaPart. The DynaPart script runs several

programs for dividing the DYNA3D model into subdomains and creating lists of nodes that share

results between processors. In Step 3 ParaDyn runs DYNA3D on each of the processors using the

subdomain of the mesh assigned to that processor and, when needed, sending nodal results between

processors during each timestep of the calculation. Each processor generates a family of text and

binary files. Step 4 is used only when post-processing with GRIZ4. The Xmilics utility is used in

step 4 to combine the binary database family for each subdomain into a binary database family

representing results on the full mesh. In step 5 there are three software products that can be used

for visualization: GRIZ4, VisIt, and EnSight. VisIt and EnSight read Mili databases and render

images in parallel. EnSight is used at LANL and VisIt is available for use with ParaDyn at LLNL.

The VisIt visualization tool is scheduled for beta testing in early 2004. This tool can be used to

visualize the parallel databases without the combine step. It can be used on a parallel computer or

in a client/server mode with the parallel computer as a server (for parallel rendering and

computing) and a PC with a Linux Red Hat operating system or a UNIX workstation as a client

(for displaying images, for fast interactivity, and for processing mouse commands). Currently only

the Mili format state databases are processed by VisIt. Time history plots generated from the state

databases will be available in the next several months.

The software products used for ParaDyn simulations are summarized in Table 1. This table includes

the input needed and output generated for each software product.

The next sections describes how to use these products with example execution lines. The final

section summarizes the steps for using the ParaDyn software and includes an execute line for each

product. This summary can be used as a handy reference once the details of each step are

understood.

ParaDyn User Manual PATH Variable for Accessing ParaDyn Software

28Version 2.1/4.1

3.2 PATH Variable for Accessing ParaDyn Software

The directory containing ParaDyn software must be included in the path names in the UNIX PATH

variable. The following set path command should be added to the .cshrc file to point to the

ParaDyn software products.

set path = (/usr/apps/mdg/bin $path)

The documentation is located in the directory /usr/gapps/mdg/doc on all computers at the LLNL

computer center. On the engineering servers at LLNL, the documentation is located in the

directories, /mdg/manuals and /public/mdg/doc for the unclassified and classified networks,

respectively.

Task Software Input Output

Partition the model. dynapart Dyna3D input
file.

Partition map;
Plot file for the partitioned
mesh.

Run a parallel sim-
ulation.

paradyn Dyna3D input
file;
Partition map
file.

Families of files from each
processor include:
Plot and time history output;
Restart dump files;
Text output files.

Combine the
binary databases.

xmilics State and time
history data-
bases for each
processor (sub-
domain).

State and time history data-
bases for the full mesh.

Visualize the
results.

griz4s

visit

ensight

State and time
history data-
bases for the full
mesh.
State databases
for each proces-
sor; Beta testing
01/04.
State databases

Screen display;
RGB, postscript, PNG and
JPEG output files.

Client/server screen output,
movies, and other graphics
formatted output files.

Table 1. ParaDyn Software Products.

ParaDyn User Manual Partitioning a Model

29Version 2.1/4.1

3.3 Partitioning a Model

The DynaPart script is used for partitioning the model input. The model includes the mesh, all of

the initial and boundary conditions, and the selected mechanics options; in effect the standard

DYNA3D input file. The partitioning subdivides the mesh, contact surfaces, constraints, and other

boundary conditions that share nodal data when the domain is divided among the processors. See

Section 2 for details.

Running DynaPart in a subdirectory is recommended. This is because the partitioning software

generates a number of intermediate files in the current working directory. If these files from the first

partitioning of a model are not destroyed, DynaPart with the keyword again can be used for

subsequent partitioning of the same model for a different number of processors. DynaPart uses

results saved from the original DynaPart run and consequently, can skip over some of the time

consuming programs executed by the DynaPart script. It is very advisable to use the again keyword

on the DynaPart execute line when repartitioning a large model. Finally, using a subdirectory also

conveniently groups the files containing the results generated for each model that is partitioned.

The form of the DynaPart execute line is

dynapart infile np [keyword1 keyword2 ...] |& tee logfilename

The first two arguments are required. The first argument is the name of the ParaDyn input file and

the second argument is the number of processors requested for the partitioning. The remaining

arguments are optional keywords. These keywords are described in detail in Appendix 1. The two

most commonly used are again and localparallel. The again keyword is described above. The

localparallel keyword is used in Version 4.1. This keyword will cause large local contact surfaces

to be subdivided if a large number of processors is specified. See the discussions in Section 2.4.

The output from DynaPart is piped into the UNIX tee utility. This step should always be used so

that the statistics generated by the partitioning programs as well as other diagnostic messages can

be examined after DynaPart is run.

The following is an example of the DynaPart execute lines for the input file infile and for partitions

for 64 and 128 processors. Notice the second execution line for the same model uses the again

keyword to save computer time.

dynapart infile 64 |& tee infilelog.64 First partition of a model for 64

ParaDyn User Manual Partitioning a Model

30Version 2.1/4.1

processors

dynapart infile 128 again |& tee infilelog.128 Repartition for 128 processors

The output from the mesh partitioning is a file that is referred to as the partition file. The partition

file is a required input file for the ParaDyn program.The name of the partition file is infile.np where

np is the number of processors selected. For the d3samp1 input file, the name for a four-processor

partition is d3samp1.4. The first several lines in the partition file contain processor (subdomain)

totals for the nodes and elements assigned to each processor. This file can be viewed with a text

editor.

DynaPart generates a Mili plot database (binary result files) that can be used to visualize the

subdomains of the partitioned model. The root name for the plot file is parplt. In this special case,

there is only one file in the Mili database and this file contains only the geometry for the model.

The last character in the geometry file name is always an A and if you change to a new file name,

the last character must also be an A. GRIZ4 can be used to visualize the database. The result is a

coloring of the mesh subdomains by processor and a corresponding map of color values associated

with the processors. The color map labeled materials is a coloring by processor for plots generated

by DynaPart.

Figure 7. Two and four processor partitions for the d3samp1 test problem.

Two processor partition Four processor partition

ParaDyn User Manual Partitioning a Model

31Version 2.1/4.1

Caution: The database file, parpltA, is overwritten when DynaPart is run again in the same

directory. The database can be saved by renaming it before partitioning the model another time.

Remember the last character in the new name must be an A.

There are two important statistics written to the DynaPart log file, 1) the load balance number

computed in the Metis programs and 2) if local contact or other special options are used, a

processor count is printed which corresponds to the maximum number of processors that can be

specified to achieve a computational load balance. The optimal load balance number is 1.000 and

generally the load balance should be less than 1.1. See discussions in Section 2.6. These two

numbers can be viewed by using the following UNIX grep commands on the DynaPart log file as

shown in the following examples:

grep “Load balance:” logfilename

Edge cuts: 1080, Load balance: 1.00000, Score: 1.55556.

grep “Max # partitions” logfilename

Max # partitions for good load balance: 27

Example 1. Mesh partitioning and repartitioning for a simple model with no contact

This very simple example illustrates the use of DynaPart for model partitioning. This problem does

not include the special options, such as contact or nodal constraint sets, that constrain the

partitioning of the mesh. Thus, there will not be a statistic computed by DynaPart for the limit on

the maximum number of processors.

Step 1. Set up a subdirectory for partitioning the d3samp1 problem

mkdir partition Make a subdirectory partition

cd partition

ln -s ../d3samp1 . Make a link to the input file, d3samp1

The UNIX utility ln links the d3samp1 file to the subdirectory partition without making a

copy. This saves disk space when working with large files. For the same reason it is a good

idea to use ln in subdirectories when making runs using the same input file and varying the

number of processors. This is the case, for example, when generating the speedup curves

for a large model.

ParaDyn User Manual Partitioning a Model

32Version 2.1/4.1

Step 2. Partition the model for two processors and view the partitioned results with GRIZ4.

dynapart d3samp1 2 |& tee d3samp1_log.2

The output files from this partitioning are d3samp1.2, the plot database, parpltA, and the

log file, d3samp1_log.2. To view the partitioned model, use GRIZ4.

griz4s –i parplt The root name is used for the input to GRIZ4.

mv parpltA plt2_A Save the plot file for later viewing.

Notice the new plot file name must end with A.

Step 3. Examine the load balance statistic in the log file

grep “Load balance:” d3samp1_log.2
Edge cuts: 360, Load balance: 1.00000, Score: 1.18519.

Step 4. Repartition the model for four processors.

dynapart d3samp1 4 again |& tee d3samp1_log.4

mv parpltA plt4_A

grep “Load balance:” d3samp1_log.4
Edge cuts: 1080, Load balance: 1.00000, Score: 1.55556.

Step 5. Repartition the model for eight processors.

dynapart d3samp1 8 again |& tee d3samp1_log.8

mv parpltA plt8_A

grep “Load balance” d3samp1_log.8
Edge cuts: 2696, Load balance: 1.02058, Score: 2.40741.

The conclusion to draw from the partitioning for two, four and eight processors is that the optimal

number of processors to use for this problem may be four. This can be verified with a scalability

study for the particular parallel computer being used.

Example 2. Partitioning a model with contact surfaces

ParaDyn User Manual File Name Sequences

33Version 2.1/4.1

In this example there are ten contact interface definitions. Six of the interfaces are type 2 interfaces

and four are type 3 slidelines. In version 2.1 of ParaDyn, each slideline must be fully contained in

one processor. In version 4.1 of ParaDyn, the type 3 slidelines can be split into more than one

processor if the localparallel keyword is used. Future versions of ParaDyn will remove this

constraint for type 2 slidelines.

The command lines used to partition and repartition the model for 8, 16, 27, and 32 processors are

shown in Table 2. The maximum number of processors for load balancing the calculations is 27.

The load balance statistic is shown for each of the partitions and shows a significant increase for

more than 27 processors.

In spite of the good load balance statistics for 27 processors, speedup curves for this problem on

several platforms show that it should be run on either 8 or 16 processors!

3.4 File Name Sequences

The ParaDyn program (when restarted) and the post-processing software rely on a knowledge of

the naming convention for the families of files generated for each processor in a parallel simulation.

The default root names of restart files, plot databases, and text files generated in a ParaDyn run

include a processor number in the string. Each processor generates a set of files equivalent to a

DYNA3D run on a single processor but with a different root name as shown in Table 3. For a

problem running on 1000 or more processors, the length of the string appended to the root name is

Table 2. Partitioning and statistics for the df8m3 model

Commands for partitioning the df8m3 model Comments and statistics

dynapart df8m3 8 |& tee df8m3_log.8
grep “Load balance:” df8m3_log.8
grep “Max # partitions” df8m3_log.8

Eight processor partition.
Load balance: 1.03035.
The maximum number of processors is 27.

dynapart df8m3 16 again |& tee df8m3_log.16
grep “Load balance:” df8m3_log.16

Sixteen processor repartition.
Load balance: 1.03075.

dynapart df8m3 27 again |& tee df8m3_log.27
grep “Load balance:” df8m3_log.27

Twenty-seven processor repartition.
Load balance: 1.03053.

dynapart df8m3 32 again |& tee df8m3_log.32
grep “Load balance:” df8m3_log.32

Thirty-two processor repartition.
Load balance: 1.18315.

ParaDyn User Manual File Name Sequences

34Version 2.1/4.1

adjusted to accommodate the number of digits contained in the number of processors used. For

example, for 1024 processors, four digits are added to the root name. Similarly for 10240

processors, five digits are added to the root name.

An example showing the file naming conventions including the Mili state and time history

databases is shown in Table 3. These are the default names generated for Mili database files for a

problem with less than 1000 processors.

Table 3. Database family names generated by ParaDyn

1. State and time history databases: Root names m_p and m_th

P0 P1 P2 P3

m_p000A
m_p000

m_p001A
m_p001

m_p002A
m_p002

m_p003A
m_p003

m_p00001 m_p00101 m_p00201 m_p00301

m_p00002 m_p00102 m_p00202 m_p00302

...

m_p00099 m_p00199 m_p00299 m_p00399

P0 P1 P2 P3

m_tht000A
m_tht000

m_tht001A
m_tht001

m_tht002A
m_tht002

m_tht003A
m_tht003

m_tht00001 m_tht00101 m_tht00201 m_tht00301

m_tht00002 m_tht00102 m_tht00202 m_tht00302

...

m_tht00099 m_tht00199 m_tht00299 m_tht00399

2. Restart database names: Root names dmp

P0 P1 P2 P3

dmp000p01 dmp001p01 dmp002p01 dmp003p01

dmp000p02 dmp001p02 dmp002p02 dmp003p02

dmp000p03 dmp001p03 dmp002p03 dmp003p03

3. Text output file names

ParaDyn User Manual ParaDyn Execute Line Options

35Version 2.1/4.1

3.5 ParaDyn Execute Line Options

This section discusses the form of the ParaDyn execute line. On most parallel computers the

execute line is preceded by a system utility for copying the executable and execute line over to the

processors. Specific examples of this are discussed in the sections on running ParaDyn interactively

and under a batch processor.

In Version 2.1 the partition file must be copied into a file named partfile before executing ParaDyn.

Do not remove the original partition file because it is used also with the post-processing software.

Use a soft link if the partition file is large. In Version 4.1 the partition file can be named either

partfile or infile.np where np is the number of processors. This the name generated by DynaPart.

The ParaDyn execute line options are identical to the DYNA3D execute line. There are three

options that are important in a parallel simulation: q=, l=, and c=. These options are discussed

below and illustrated in the examples. The restarts for ParaDyn likewise use the same execute line

as those used in executing a DYNA3D restart.

The execute lines for a ParaDyn initial run and a restart execution are illustrated in the following

two examples. The comments relate to the use of the q=, l=, and c= options which are described

below.

Example 1:

paradyn i=infile l=filelength Specify the file length in Mbytes

paradyn i=restart r=dumpfile l=filelength Specify the file length on a restart run

Example 2:

paradyn i=infile q=nseconds Allow time for file clean up in a batch run

paradyn c=lastdump q=nseconds Get the restart dump name from file lastdump

P0 P1 P2 P3

d3hsp d3hsp001 d3hsp002 d3hsp003

frc000 frc001 frc002 frc003

Table 3. Database family names generated by ParaDyn

ParaDyn User Manual ParaDyn Execute Line Options

36Version 2.1/4.1

The first set of execute lines uses the standard input lines for restarts described in the DYNA3D

manual. The second set of execute lines illustrates a restart method which starts from the last

successfully written restart file.

Notice that it is not necessary to specify an input file for a restart execution, as shown in the second

example. If the input file is not specified, all input options will remain the same as those specified

in the preceding run. These values from the previous run are stored in the restart dump file and read

in during the input phase of the restart run.

The l= option provides a method for increasing the maximum file length for each member of a

database family of plot files. The size specified is in units of Megabytes. Caution: If the file length

option is used on the initial ParaDyn run, it must be used on all subsequent restarts.

The q= option provides an important capability for terminating a problem run under batch and

providing some extra time for file cleanup. The value, in seconds, specifies the number of seconds

(by the wall clock) to run the ParaDyn simulation before ParaDyn stops itself with a normal

termination. This option is often used to allow the analyst to specify a wall-clock termination time

for a batch run that is shorter than the batch time he selects. The extra time allows for final file

writes and close operations for the database families and other output files.

The c= option is used to get the name of the last successfully written restart file. ParaDyn updates

a file named lastdump with this restart file name after the write is successfully completed. This

restart file is then selected by typing c=lastdump.

Caution: The standard output files, (d3hsp, d3hsp0001, ...) are overwritten when a subsequent run

is made in the same directory. It is generally a good practice to at least save the file d3hsp into a

different name between restarts of the problem. This output file, d3hsp, usually has results that are

of value at the end of a long sequence of restarts. For instance, file names, input options, and

dynamic relaxation results are written into the file d3hsp. Many of the error messages generated by

ParaDyn are also written into the d3hsp file.

Example: Execute lines for ParaDyn

Consider an initial ParaDyn run using the DYNA3D input file, d3samp1and a restart run using an

input data file, irestart. The initial run and restart run are executed with the following ParaDyn

input arguments and files are generated following the naming convention in Table 3.

ParaDyn User Manual Running ParaDyn Interactively

37Version 2.1/4.1

paradyn i=d3samp1 l=10 File lengths are 10 Mbytes

paradyn i=irestart r=dmp000p01 l=10 Restart includes the l= option.

Notice, the file length is specified on both the initial run and on the restart.

This next example illustrates the use of the q= termination option.This problem will be submitted

to batch to run for one hour (3600 seconds) and ten minutes before the end of the run (after 3000

seconds) ParaDyn will call the termination routine to close files and exit. The maximum length of

the files in the plot databases is set to 100 Megabytes. The name of the restart file is the name listed

on the first line of the file named lastdump.

paradyn i=d3samp1 q=3000 l=100 Allow 10 minutes for file cleanup and 100 Mbyte

files

paradyn c=lastdump q=3000 l=100 Restart uses the lastdump file,100 Mbyte files and

allows 10 minutes for file cleanup

3.6 Running ParaDyn Interactively

The ParaDyn program is usually run under a system utility, such as mpirun, prun, poe, or srun

on a parallel computer. This system utility copies the ParaDyn executable to the processors on a

parallel computer. Generally a small number of processors (2 to 16 processors) are available on a

debug partition for interactive job processing. This gives code developers and analysts an

opportunity to develop and test small prototype models prior to running a large model. It is also

useful to run scalability studies on a debug partition if it includes enough processors. Once the

model is tested, large ParaDyn simulations are submitted for batch processing. Script files are often

made available in public file systems to automate batch runs.

3.6.1 Running ParaDyn on an IBM system

ParaDyn can be run interactively using the poe utility on the IBM computers at LLNL. In the

examples below, the IBM system has four processors per node and five hundred or more nodes. The

poe utility runs ParaDyn with an input specifying the number of nodes and optionally, the total

number of processors. The options for specifying the number of nodes and processors are inserted

ParaDyn User Manual Running ParaDyn Interactively

38Version 2.1/4.1

between the ParaDyn command and the execute line options for ParaDyn. If only one processor per

node is being used, then it is sufficient to simply specify the number of nodes with -nodes as

follows:

poe paradyn -nodes numnodes -rmpool 0 paradyn_execute_line

More than one processor per node can be used by specifying the number of nodes with -nodes and

the total number of processors with -procs.

poe paradyn -nodes numnodes -procs np paradyn_execute_line

Example: Interactive ParaDyn runs using poe

The following are command lines for executing ParaDyn with the d3samp1 input file and using

either four or five processors.

poe paradyn -nodes 4 -rmpool 0 i=d3samp1 Use 1 processor on each of 4 nodes.

poe paradyn -nodes 1 -procs 4 -rmpool 0 i=d3samp1 Use 4 processors on 1 node.

poe paradyn -nodes 2 -procs 5 -rmpool 0 i=d3samp1 Use 5 processors on 2 nodes.

3.6.2 Running ParaDyn on an Intel Linux Cluster

Interactive runs on the Linux cluster at LLNL use the utility srun for executing ParaDyn.

srun -N numbernodes -n numberprocessors -ppdebug paradyn paradyn_execute_line

Example: Interactive ParaDyn runs using srun

srun -N 4 -n 8-ppdebug paradyn i=d3samp1 Use 2 processors on each

of 4 nodes.

3.6.3 Running ParaDyn on an SGI Origin

ParaDyn is run interactively using the mpirun utility on an SGI Origin computer. The mpirun

utility runs ParaDyn for np processors as follows.

ParaDyn User Manual Running ParaDyn with Batch

39Version 2.1/4.1

mpirun -np np paradyn paradyn_execute_line

Example: Interactive ParaDyn runs using mpirun

mpirun -np 4 paradyn i=d3samp1 Use 4 processors.

3.6.4 Running ParaDyn on a Compaq at LANL

The Compaq systems at LANL use the prun utility for running interactive problems. Two steps are

needed to start up an interactive job. First log into the front end computer and use bqueues to find

a queue with free processors. Then use the utility llogin to login to a parallel partition from the front

end computers. Once logged into a partition, the prun command starts up the parallel run.

Example: Interactive ParaDyn runs on a Compaq system at LANL

prun -N 4 -n 16 paradyn i=d3samp1 Use 4 processors on each of 4 nodes.

3.7 Running ParaDyn with Batch

ParaDyn production simulations are always run under the batch system. To set up a problem for

batch, a script file is prepared and includes the execute lines for ParaDyn with one difference. The

the number of nodes and processors is usually specified on a separate line in the script file rather

than included as a keyword argument on the execute line. Thus, the execute line needed in the batch

script file includes the utility for setting up the parallel execution followed by the standard paradyn

execute line. As an example, the script file to run ParaDyn on an IBM includes separate lines for

specifying the number of nodes (the -ln option in psub) and the number of processors (the -g option

in psub). The following are the batch equivalent of the interactive IBM execute lines given in

Section 3.6

psub -ln 4

psub -g 4

poe paradyn i=d3samp1 Use 1 processor on each of 4 nodes.

psub -ln 1

ParaDyn User Manual Running ParaDyn with Batch

40Version 2.1/4.1

psub -g 4

poe paradyn i=d3samp1 Use 4 processors on 1 node.

psub -ln 2

psub -g 5

poe paradyn i=d3samp1 Use 5 processors on 2 nodes.

To set up a problem for batch processing at LLNL, prepare a script file and submit it to the batch

system with the psub utility. Lines included in a typical script file for a ParaDyn simulation are

shown in Figure 8.

The script file is submitted to batch for processing using the PSUB utility.

psub -c computername scriptfile

Use the pstat utility for interrogating the status of runs submitted with psub. A status of RUN

indicates the job is running on the parallel computer. The online man pages can be viewed to study

other options provided by the psub and pstat utilities. The spjstat and spj utilities display the

status of the job queues and also have man pages.

PSUB -eo

PSUB -tH 2:00 # Job is to run for a maximum of 2 hours

PSUB -ln 8

PSUB -g 32

printenv

echo "started at"

date

cd /p/gk2/loginname/dynatests

Allow 10 minutes (600 seconds) for file cleanup

poe paradyn i=dynin q=6600 l=100

echo "ended at"

date

Figure 8. A typical batch script file for a ParaDyn simulation

ParaDyn User Manual Visualizing ParaDyn Results

41Version 2.1/4.1

3.8 Visualizing ParaDyn Results

It is recommended that Mili binary database format be selected when running ParaDyn

simulations. The format for the Mili databases provides a considerable amount of flexibility to the

code developers for designing material templates that display results specific to each material type

as well as the flexibility for selecting (with input keywords) which state data fields should be

included in a database generated by a parallel analysis. Recent code additions in ParaDyn and

DYNA3D require the use of the Mili database format. In addition, the Mili databases have been

extensively tested in large benchmarks and in production runs at both Livermore and Los Alamos.

For these reasons, we encourage the use of Mili format binary output. The old Taurus database

format is supported only for backward compatibility with old input models.

3.8.1 Selecting Mili Databases with Keyword Input

Mili and Taurus database formats are selected by adding keywords mili_plot or taurus_plot in the

keyword input section of the DYNA3D input file. The keywords for selecting the state databases

are:

mili_plot filename

endfree

Set the value of the filename to the root name desired for the Mili databases. Set the value

of filename to 1 to select the Mili database format with the default root name, m_p. Unless

the taurus_plot keyword is used, both Mili and Taurus state databases will be generated.

taurus_plot off

Disable the output of the Taurus databases.

Example: Specify Mili for the state database format in a ParaDyn analysis.

Add the following keyword input to the keyword control options section of the input file.

mili_plot 1 Write both Mili and Taurus state databases

endfree

mili_plot 1 Write out Mili state databases

taurus_plot 0 Do not write out Taurus databases

ParaDyn User Manual Visualizing ParaDyn Results

42Version 2.1/4.1

endfree

3.8.2 Combining Parallel Databases and Visualizing Results with GRIZ4

Before the binary databases from a ParaDyn simulation can be visualized with GRIZ4, the

processor families must be combined with the utility Xmilics. Then there are two choices for

visualizing the results with GRIZ4:

1) The combined databases can be viewed on the parallel computer with GRIZ4.

2) The combined database families can be transported (using FTP or SCP) to a workstation

and viewed with GRIZ4 on the workstation.

There are some trade-offs to be made in selecting either of these choices for visualization. For large

problems with hundreds of thousands or millions of elements, the rendering and the display of a

frame sent over a network to a workstation can be as long as twenty or thirty minutes. In this case

better interactivity is possible by using FTP to send the combined database over to a local

workstation. The additional resources needed for this improved interactivity are: 1) twice the disk

space is needed on the parallel computer, 2) a workstation is needed with high-speed graphics

capabilities, and with enough disk space to store the full database from a parallel simulation. Even

with this additional hardware, the viewing of results is delayed by the time it takes to FTP the

databases to the workstation.

The utility Xmilics combines the Mili state and time history databases and the Taurus state database

from a ParaDyn run. The Taurus time history databases must be combined with the older utility

COMBINETHS. The combined databases can then be viewed with GRIZ4.

The execute line for Xmilics for both state and time history databases is:

xmilics -i infileroot -o outfileroot -c partfile

The first argument is the root name for the families of state databases and the second argument is

the root name for the output files with the combined databases. The third argument is the name of

the partition file.

Example: Xmilics execute line

ParaDyn User Manual Visualizing ParaDyn Results

43Version 2.1/4.1

xmilics -i m_p -o mout -c d3samp1.2 Combine the Mili state database files.

xmilics -i m_tht-o tout -c d3samp1.2 Combine the Mili time history database files.

On the workstation or the parallel computer, these databases are viewed with GRIZ4. Once GRIZ

is started up with a Mili database, the GRIZ load command can be used to load another Mili

database for viewing.

Example: View a State and Time History Database with GRIZ4

View the combined Mili time history and state databases processed with Xmilics in the previous

example.

griz4s –i mout Read and view the state plots.

load tout Load the time history database for viewing.

Because the Mili time history files are still under development, the Taurus time history files are still

supported to provide a backup capability to the time history results available in both the Mili state

and time history files. The utility COMBINETHS combines the Taurus time history database from

a ParaDyn run. The combined time history database can then be viewed with the THUG utility [11].

The execute line for COMBINETHS is

combineths infileroot outfileroot partfile 0 0

infileroot is the root name for the families of time history databases

outfileroot is the root name for the output files with the combined databases

partfile is the name of the partition file.

The last two arguments must both be 0.

3.8.3 Visualizing Results with VisIt

VisIt is a parallel visualization tool that is currently undergoing beta testing for Mili format

databases. VisIt can be run on the parallel computer directly or it can be run in a client/server mode

using a workstation or PC as the client and the parallel computer as the server. The VisIt Web page

at http://www.llnl.gov/visit includes a Getting Started manual as well as a thorough full document.

Interactive help information is available with pull down menus in VisIt.

ParaDyn User Manual A Summary of Steps for Running ParaDyn Simulations

44Version 2.1/4.1

Currently VisIt only supports the Mili state databases. The VisIt plan is to implement time history

plots using the Mili state databases in mid or late 2004.

A preprocessing step to VisIt is needed once for each set of Mili databases that will be viewed with

VisIt. Use the following VisIt execution to preprocess a Mili database with root name miliroot:

visit -makemili miliroot Preprocess Mili database for viewing with VisIt

This will produce a file named miliroot.mili which is used by VisIt to open the Mili database family.

Once this step is taken, start up VisIt without an argument and open the Mili database by selecting

the file miliroot.mili.

Example: Visualize the Mili database m_p with VisIt.

visit -makemili m_p Create the m_p.mili file for VisIt

visit Start up VisIt for the m_p Mili database;

Open the file m_p.mili in the VisIt file panel.

3.8.4 Visualizing Results with EnSight

EnSight is a commercial parallel visualization tool. The installation of EnSight at LANL includes

a Mili file reader. The Xmilics combining step is not needed when using EnSight.

3.9 A Summary of Steps for Running ParaDyn Simulations

Set the UNIX path variable to the location for the ParaDyn software in the .cshrc file so that it is

included each time a new C shell is started.

set path=(/usr/apps/mdg/bin $path)

The documentation is located in the directory /usr/apps/mdg/doc.

A summary of steps for executing ParaDyn is shown as a set of steps outlined in tables on the next

page.

ParaDyn User Manual A Summary of Steps for Running ParaDyn Simulations

45Version 2.1/4.1

Steps for Running ParaDyn
Step 1. Partition the mesh and find the optimal number of processors for the run

mkdir partition ; cd partition Make a directory for partitioning.

ln -s ../d3samp1 . Link the input file into this directory.

dynapart d3samp1 2 |& tee logfile.2 Run the first partition.

grep “Load Balance:” logfile.2 Check the load balance.

grep “Max # partitions” logfile.2 Check the processor limit.

dynapart d3samp1 4 again |& tee logfile.4 Repartition the model.

mv d3samp1.4 ../ Move the best partition file to the working
directory and change back to the work direc-
tory.

Step 2. Execute ParaDyn initial and restart runs

mkdir rundir; cd rundir Make a directory for the simulation.

ln -s ../d3samp1 .
ln -s ../d3samp1.4 partfile

Link the input and partition files into the direc-
tory.

paradyn i=d3samp1 l=100 Initial ParaDyn run with 100 Mbyte file lengths.

paradyn i=irestart d=dmp000p01 l=100 First ParaDyn restart. New input options in file
irestart.

paradyn i=irestart c=lastdump l=100 Second restart. Use the restart file name in last-
dump and input options in file irestart.

paradyn c=lastdump l=100 Third restart with no resetting of input options.

Step 3. Visualize the results with GRIZ4

xmilics -i m_p -o mout -c partfile Combine the Mili state databases.

xmilics -i m_th -o tout -c partfile Combine the Mili time history databases.

ftp myworkstation Move the combined databases to a workstation.

griz4s –i mout
load tout

View the results of the state database. View the
results of the time history database with the load
command.

ParaDyn User Manual Tips for Designing Models with Efficient Parallel Contact

46Version 2.1/4.1

4.0 INPUT FOR PARALLEL SIMULATIONS

This chapter describes data input and special instructions used for parallel simulations only.

Instructions for running multiple ParaDyn analyses and special instructions for post-processing

results written to text files are described here.

4.1 Tips for Designing Models with Efficient Parallel Contact

Although ParaDyn can be highly efficient on massively parallel computers, performance of a

ParaDyn calculation can be severely degraded by the excessive use of certain slidesurface types and

other features. This potential degradation can be a result of load imbalance and/or excess

interprocessor communication. This can be mitigated by considering the following tips:

Tip 1. Keep the largest slidesurface small enough to fit in one processor, if possible.

This is especially important for slidesurface types 1, 2, 4, 6, and 7. Nodes and elements associated

with a slidesurface of these types are partitioned into one processor, regardless of the size of the

slidesurface. Therefore, the minimum computational time per time step cannot be less than the time

required for one processor to process these nodes and elements. This lower bound on the

computational time per time step limits the maximum speedup possible, and therefore limits the

maximum number of processors that can be efficiently used for the calculation.

Tip 2. Keep slidesurfaces of types 3, 5, 8, 9, 10, 12, 13 and 14 as small as possible if subdivided

among processors.

A slidesurface of these types is distributed among as many processors as is necessary during

partitioning to generate an efficient partition for the model. Distributing the surfaces causes extra

interprocessor communication which lowers performance. Small slidesurfaces developed during

mesh generation can yield better parallel performance than one large slidesurface that is subdivided

by partitioning. Furthermore, the small slidesurfaces can be executed on different processors

simultaneously which increases the parallelism.

Tip 3. Avoid slidesurface types 1, 2, 6, and 7.

A slidesurface of any of these types requires that all associated nodes to be contained in one

processor. If two slidesurfaces of these types share a node, both slidesurfaces must be computed in

the same processor. This can lead to an accumulation in one processor of several tied slidesurfaces

which have just a few common nodes. This can potentially cause a large load imbalance. If a type

ParaDyn User Manual Tips for Designing Models with Efficient Parallel Contact

47Version 2.1/4.1

2 slidesurface is used in a model, consider replacing it with a type 9 (tied with failure). If a type 6

slidesurface is used in a model, consider replacing it with a type 8 (nodes spotwelded to surface)

slidesurface. If two type 8 or type 9 slidesurfaces share a node, both slidesurfaces can be computed

independently in different processors.

Tip 4. Select automatically generated or user-generated surfaces for automatic contact.

By default ParaDyn generates the segments (surface patches) that are used for automatic contact

types 12, 13 and 14. However, in some cases the analyst may have defined and optimized the

contact surface segments for the model. In this case surface segments can be specified manually

for the automatic contact interfaces by using the keyword segments. This keyword is added in the

keyword input section of the automatic contact interface definition.

segments 1

User-defined slave and master segments are specified. Segments associated with shell ele-

ments are treated as shell elements, with thickness, by the automatic contact algorithm.

segments 2 and segments 3

User-defined slave and master segments specified. Segments associated with shell elements

are treated as brick elements, without thickness, by the automatic contact algorithm, and

have an effective depth = (segments) x (thickness). This option generates behavior similar

to type 3 contact, and can be more robust than the segments 1 option.

Tip 5. Use domain limiting keywords for segment generation in automatic contact.

Performance may improve if the size of a slidesurface is reduced with domain-limiting keywords.

These keywords are added in the keyword input section of the automatic contact interface

definition. This list of keywords and values is documented in the DYNA3D User’s Manual[1].

xmin,xmax,ymin,ymax,zmin,zmax keywords

Specifiy domain limits for the automatic-contact search.

mat_in mat#1 mat#2 mat#3 … mat#n keyword input

Specify material numbers to include in automatic-contact segment generation.

mat_ex mat#1 mat#2 mat#3 … mat#n keyword input

Specify material numbers to exclude in automatic-contact segment generation.

ParaDyn User Manual The NIKE–DYNA Link File

48Version 2.1/4.1

normal_include mat# px py pz _min _max keyword input

Include only those segments whose angle between the vector from the center of segment to

the point (px ,py ,pz) and the segment normal are between _min and _max degrees.

Tip 6. Develop multiple instances of arbitrary contact and local contact.

For a complex mesh it is beneficial to use both local and arbitrary contact algorithms and to provide

multiple instances for each type of contact. For example, defining the full domain for an automatic

contact surface can be considerably less efficient than defining several subdomains where the

surface motion is contained in the subdomain, although the surface motion is arbitrary. An obvious

advantage in doing this is that the regions on a mesh without any contact are not included in either

the partitioning for local contact or the search domains for arbitrary contact.

4.2 The NIKE–DYNA Link File

The NIKE-DYNA link file is often used to start up a new run using stress results from a previous

run on the same mesh. The details for this technique are described in section 2.19 of the DYNA3D

manual. The first run to generate the stress file must include the following free format input to

generate the output database with the stresses. The root name for the link file is specified on the

following keyword input line.

nikefile stressfile

endfree

A ParaDyn execution with this input selecting the name, str, for the NIKE-DYNA link file will

create database families for each processor labeled

str001, str002, … strppp, …

where ppp is the processor number.

A second run uses the same input mesh but other parameters in the input, such as load curves, may

be changed. (Although the control options can be changed, it is not a requirement, and the same

data input file can be used for both runs.) The second run reads the stress databases, stores the stress

data, and uses the deformed nodal coordinate values from the first run. Other parameters associated

with the original run may also be set and are described in the section Keyword-Based Control

Features of the DYNA3D manual.

ParaDyn User Manual Multiple Versions of Running Restart Files

49Version 2.1/4.1

Example: Generate a NIKE-DYNA link file with ParaDyn

Consider a run with an input file, d3st, specifying the name stress on the nikefile keyword-input

line. A second run will use the generated stress database by specifying the m= option on the

execute line and new DYNA3D options in the input file, d3st1.

paradyn i=d3st

paradyn i=d3st1 m=stress g=glt

In the second run, the plot state database file family is given a new root name, glt.

4.3 Multiple Versions of Running Restart Files

The following describes a new capability for generating multiple versions of a running restart dump

file. The option is selected with a keyword input and optionally specifying the running restart file

names on the ParaDyn execute line. The keyword input is

numrrf nvers

The integer value, nvers, specifies the number of different versions of the running restart file to

save on disk. The default value of nvers is 2. The running restart family names are incremented

through a set of family members until nvers of them have been written. Once this limit is reached

the next running restart over writes the first running restart file in the set. The examples below

illustrate the cycling through of the names of the versions of the running restart files.

The number of cycles between the running restart dump files is selected as usual in the fifth data

field, columns 36-40, of DYNA3D control card 6. The default names for the running restart file for

ParaDyn are rsfnnnmm, where nnn is the three-digit processor number and mm is the family-

member number. To select the name of the running restart file, use the a= option on the ParaDyn

execute line.

Example: Specify multiple versions of the running restart file

Set up the input file to save three different versions of the running restart file.

ParaDyn User Manual Multiple Versions of Running Restart Files

50Version 2.1/4.1

numrrf 3

endfree

Suppose a problem is run for 100 cycles and the number of cycles between running restart dumps

is 30. The files generated for a 4-processor run will be:

rsf00001 rsf00101 rsf00201 rsf00301 (cycles 30)

rsf00002 rsf00102 rsf00202 rsf00302 (cycles 60)

rsf00003 rsf00103 rsf00203 rsf00303 (cycles 90)

Suppose this problem is run for another 150 cycles, then the running restart files will be

rsf00001 rsf00101 rsf00201 rsf00301 (cycle 120)

rsf00002 rsf00102 rsf00202 rsf00302 (cycle 150)

rsf00003 rsf00103 rsf00203 rsf00303 (cycle 180)

rsf00001 rsf00101 rsf00201 rsf00301 (cycle 210)

rsf00002 rsf00102 rsf00202 rsf00302 (cycle 240)

In the above, the cycle (30, 60, 90) files were over written by the cycle (120, 150, 180) files,

respectively. And finally, the cycle (210, 240) files over write the cycle (120, 150) files.

Example: Select a new name for the running restart files

Suppose instead in the previous example that the initial problem is restarted from cycle 60 and runs

up to cycle 250. A new name can be selected for the versions of the running restart files as follows:

paradyn i=inrest,r=rsf00002,a=nrf

The files generated will be

nrf00001 nrf00101 nrf00201 nrf00301 (cycle 90)

nrf00002 nrf00102 nrf00202 nrf00302 (cycle 120)

nrf00003 nrf00103 nrf00203 nrf00303 (cycle 150)

nrf00001 nrf00101 nrf00201 nrf00301 (cycle 180)

nrf00002 nrf00102 nrf00202 nrf00302 (cycle 210)

nrf00003 nrf00103 nrf00203 nrf00303 (cycle 240)

ParaDyn User Manual Nodal Force Output

51Version 2.1/4.1

4.4 Nodal Force Output

The nodal force output is described in the keyword input and Section 4.47 of the DYNA3D input

manual. Nodal force output is selected using the keyword input variable nfrout. The value of this

keyword input variable is the total number of nodes that will be written into the output files.

Output format

For each time at which the nodal forces are desired, the following set of data are written:

Card 1 (E12.5,1x,i8)

Col. 1-12 Time at which forces have been computed E12.5

Col.14-20 Number of nodes (nfrout) I8

Cards 2 to Card 1+nfrout (i8,3e12.7)

Col. 1-8 Node number I8

Col. 9-20 Force in the x-direction E12.5

Col. 21-32 Force in the y-direction E12.5

Col. 33-44 Force in the z-direction E12.5

The name of the text output file containing the nodal force data is nodfrc for a DYNA3D run.

ParaDyn generates two kinds of text output files. The first output file (generated by processor zero

only) contains the times at which the forces are output for the selected nodes. The name of this file

is nfrctimes. The remaining output data, the node numbers and three components of the force, are

written to a set of files generated by all of the processors. The files are named nfrcnnn, where nnn

is the three-digit processor number. By separating the data in this way, the following UNIX utilities

can be used to combine the data into a single file, with the time steps for the output at the top,

followed by the list of nodes and forces for each time step.

cat nfrc* | sort -n - > forceout

Example: Combine nodal force output from ParaDyn

The following is an example in which two nodes, (12,144), were selected and written at three

different time steps. The nodes were merged using the files from the processors with the previous

CAT and SORT utilites. The results are

ParaDyn User Manual Nodal Force Output

52Version 2.1/4.1

0.00000E+00 2

0.44627E-06 2

0.89344E-06 2

 12 0.00000E+00 0.00000E+00 0.00000E+00

 12 0.00000E+00 0.00000E+00 0.00000E+00

 12 0.00000E+00 0.00000E+00 0.00000E+00

 144 0.00000E+00 0.00000E+00 -0.14000E-11

 144 0.00000E+00 0.00000E+00 -0.14000E-11

 144 0.00000E+00 0.00000E+00 -0.15000E-11

To eliminate the time stamp data at the beginning of the file (and read it from the file nfrctimes

instead in a post-processor), use the following UNIX utilities for combining the output.

cat nfrc??? | sort -n - > forceout

ParaDyn User Manual Future Enhancements

53Version 2.1/4.1

5.0 FUTURE ENHANCEMENTS

The following features implemented in DYNA3D are future enhancements in the ParaDyn

software.

• Message-passing versions of sliding interface types 1, 2, 6, and 7. These contact surfac-

es are allocated to one processor by DynaPart in ParaDyn Versions 2.1 and 4.1. Future

message- passing versions of the algorithms will provide an option to subdivide these

algorithms.

REFERENCES ParaDyn User Manual

54Version 1.01

REFERENCES

1. Lin, Jerry I., “DYNA3D: A Nonlinear, Explicit, Dimensional Finite Element Code for Solid
and Structural Mechanics—User Manual,” Lawrence Livermore National Laboratory,
Livermore, California, UCRL-MA-107254 Rev. 2, 1999.

2. Speck, D. E., Dovey, D. J., “GRIZ: Finite Element Analysis Results Visualization for
Unstructured Grids—User Manual,” Lawrence Livermore National Laboratory, Livermore,
California, UCRL-MA-115696, 2000.

3. Speck, D. E., “MILI: A Mesh I/O Library—Programmer’s Reference”, Lawrence Livermore
National Laboratory, Livermore, California, UCRL-MA (in publication) 2000.

4. Sherwood, Robert J., “DynaPart Auxiliary Documentation Files”, Lawrence Livermore
National Laboratory, Livermore, California, UCRL-ID-137888, 2000.

5. Schauer, D. A., Hoover, C.G., Kay, G. J., Lee, A.S., and De Groot, A.J., "Crashworthiness
Simulations with DYNA3D", Paper No. 961249, Transportation Research Board, 1996.

6. Karypis, G. and Kumar, V., “METIS 3.0: Unstructured Graph Partitioning and Sparse Matrix
Ordering System,” University of Minnesota, Department of Computer Science, 1997. See
also http://www-users.cs.umn.edu/~karypis/metis/main.shtml.

7. Karypis, G. and Kumar, V., “A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs,” SIAM Journal on Scientific Computing, 1998. A short version appears in
Intl. Conf. on Parallel Processing, 1995.

8. Karypis, G. and Kumar, V., “Multilevel k-way Partitioning Scheme for Irregular Graphs,”
Journal of Parallel and Distributed Computing, 1997.

9. Hendrickson, B. and Leland, R., “An Improved Spectral Graph Partitioning Algorithm for
Mapping Parallel Computations,” Sandia National Laboratory Report Number SAND92-
1460, 1992.

10. Hoover, C.G., Badders, D. C., De Groot, A.J., and Sherwood, R. J., “Parallel Algorithm
Research for Solid Mechanics Applications Using Finite Element Analysis,” Lawrence
Livermore National Laboratory, Livermore, California, UCRL-ID-129202, 1997.

http://www-users.cs.umn.edu/~karypis/metis/main.shtml
http://www-users.cs.umn.edu/~karypis/metis/main.shtml

ParaDyn User Manual Running the DynaPart software

55Version 2.1/4.1

 APPENDIX 1. APPENDIX 1. DynaPart Command Line and Keywords

As discussed in Section 3, a DYNA3D input model must be partitioned before using it as input to

ParaDyn. The partition file generated by DynaPart includes the lists of nodes and elements

assigned to each processor. This file is read by the ParaDyn program and is the map used to

distribute the model across the processors on a parallel computer.

1.1 Running the DynaPart software

To access the MDG software, the standard path name must be in the Unix PATH variable. C shell

users working on the Livermore Computing systems may add this line to their .cshrc file to set the

PATH variable when a new C shell is started.

set path = (/usr/apps/mdg/bin $path)

Online help information that includes the format of the DynaPart command line and descriptions

of all of the keywords is available by typing:

dynapart -help

The DynaPart script requires two or more arguments. The first two arguments are mandatory, and

the remainder are optional keyword arguments. The first argument is the name of the DYNA3D

input file and second argument is the number of processors over which you wish to distribute this

job. The syntax of the dynapart command is:

dynapart <dyna-input-file> <number-processors> [keyword...]

Items in <> are required. Items in [] are optional.

For example, if the name of the DYNA3D input file is bigmodel and you wish to run on 32

processors, cd to the directory containing file bigmodel and issue the following command:

dynapart bigmodel 32

ParaDyn User Manual Optional Keyword Arguments to DynaPart

56Version 2.1/4.1

The above command will generate a partition file named bigmodel.32, and will also generate

diagnostic output to the user's window. It is useful to save this diagnostic output for future

reference. If you wish to save the diagnostic output to file bigmodel32.log, then replace the

command above with:

dynapart bigmodel 32 |& tee bigmodel32.log

Carefully look through the screen output (or the file bigmodel32.log) to make sure that each phase

of the partitioning was successful. If error messages were issued, correct the DYNA3D input file

and run DynaPart again.

When the partitioning runs to a successful completion, the partition file will be in the current

directory, and will have a name of the form <job-name>.<number-of-processors>. In the example

above, the partition file generated is bigmodel.32.

For large models that have long DynaPart run times, it is often possible to repartition the model for

a different number of processors using the files generated in a prior run of DynaPart. This can be

done if (1) the DYNA3D input file has not changed since the previous partition, (2) the intermediate

files from the previous partition are still in the current working directory and have not been

modified, and (3) you have not changed the state of keywords segbased, nosegbased, agglom,

noagglom, localparallel, nolocalparallel, optslide, nooptslide, optslideradius, opslideweight, or

optslidebuckets . For a definition of these keywords, see Table 4. The shorter DynaPart run is

selected using the keyword again on the DynaPart command line. Using this keyword saves time

because it eliminates redundant executions of several DynaPart programs:

dynapart bigmodel 64 again |& tee bigmodel64.log

When using the again keyword, the user assumes all responsibility to see that all of the DynaPart

intermediate files from the previous partition of this same job remain unmodified since the earlier

run.

1.2 Optional Keyword Arguments to DynaPart

There are a number of keyword options that affect the partitioning of an input file. Some keywords

modify numerical parameters that are used during partitioning, and other keywords modify the

partitioning algorithms in other ways. Recall that the syntax for the dynapart command is:

ParaDyn User Manual Optional Keyword Arguments to DynaPart

57Version 2.1/4.1

dynapart <dyna-input-file> <number-processors> [keyword...]

Items in <> are required. Items in [] are optional.

There can be any number of keywords, including zero. If no keywords are specified, all keywords

assume their default values. Keywords can be specified in any order, except that keywords that

specify a value must be followed immediately by that value.

The list of optional keywords in DynaPart is shown in Table 4.

Table 4. DynaPart Keywords

Keyword Function

again Rerun DynaPart using intermediate files from the previous run.

segbased Use segments where appropriate to calculate Special Element
sets. Default.

nosegbased Use nodes rather than segments to calculate Special Element sets.

agglom Run AGGLOM.
Version 2.1 only.

noagglom Do not run AGGLOM. Default.
Version 2.1 only.

localparallel Subdivide local contact for sliding interface types 3, 5, 8, 9, and
10.
Version 4.1 only.

nolocalparallel Do not subdivide local contact for sliding interface types 3,5, 8, 9,
and 10.
Version 4.1 only.
Default.

optslide Optimize sliding interfaces by adding edges to the graph.
Version 4.1 only.
Default.

nooptslide Do not optimize sliding interfaces by adding edges to the graph.
Version 4.1 only.

ParaDyn User Manual Optional Keyword Arguments to DynaPart

58Version 2.1/4.1

optslideradius <n> Do not add a graph edge between segments of a sliding interface
if they are connected within this distance.
Version 4.1 only.
Default is 3.

optslideweight <n> Use edge weight of n when adding edges between segments on a
sliding interface.
Version 4.1 only.
Default is 5.

optslidebuckets <n> Divide the search space for each sliding interface into n buckets in
each direction to optimize the search for nearest neighbors in the
contact search algorithm.
Version 4.1 only.
Default is 20.

setcostmult <m.n> Cost multiplier for metavertices. Default is 1.5.

maxsetfillfactor <m.n> Max size for separable-set segment in units of processor capacity.
Range is 0.1 to 1.0 and default is 0.9.

dice Subdivide separable sets too large for one processor. Default.

nodice Do not subdivide large separable sets.

metis306 Use Metis V3.0.6 rather than the default Metis.

kmetis Run kmetis instead of default skmetis.

pmetis Run pmetis instead of default skmetis.

skmetis Run skmetis. Default.

multiconstraint Run multiconstraint Metis instead of default single constraint.

partitioncommcost <m.n> Communication cost for edge cut. Default 0.5.

partitiontimes <n> Number of times to partition for each set of SKMETIS parame-
ters. Default 4.

partitionverbosity <n> Amount of status information from SKMETIS:
1 = minimum
2 = each parameter set
3 = each iteration.

Default is 1.

plotnone Do not generate a plot file of the partition.

plottaurus Generate a Taurus plot file of the partition.

Table 4. DynaPart Keywords

Keyword Function

ParaDyn User Manual Optional Keyword Arguments to DynaPart

59Version 2.1/4.1

The following is a discussion of each of the keywords.

again

This keyword eliminates redundant initial steps when repartitioning a data set that has been

partitioned earlier. It may not be used if changing the status of keywords segbased, nosegbased,

agglom, noagglom, localparallel, nolocalparallel, optslide, nooptslide, optslideradius,

optslideweight or optslidebuckets, but may be used if changing the number of partitions or the

values of other keywords. If again is not specified, the default is to repeat all steps of the

partitioning.

segbased

Use segments (also known as facets) to generate sets of elements that must be handled in a single

processor. Elements are included only if they contain all four nodes of a segment in a special

DYNA3D object such as a sliding interface. This is the default.

nosegbased

Use nodes to generate sets of elements that must be handled in a single processor. Elements are

included if they contain any node in a special DYNA3D object such as a sliding interface.

agglom

Keyword for ParaDyn Version 2.1 only. Run program AGGLOM to generate a graph that better

represents models having automatic contact sliding interfaces.

noagglom

Keyword for ParaDyn Version 2.1 only. Do not run program AGGLOM.

localparallel

plotmili Generate a Mili plot file of the partition.
This is the default.

plotboth Generate Taurus and Mili plot files of the partition.

Table 4. DynaPart Keywords

Keyword Function

ParaDyn User Manual Optional Keyword Arguments to DynaPart

60Version 2.1/4.1

Keyword for ParaDyn Version 4.1 only. Subdivide local contact surfaces for sliding interface types

3, 5, 8, 9, and 10. This keyword provides the option to use more processors for models that

previously would not partition well because the largest local contact surface(s) were constrained to

reside fully in one processor. This is the default.

nolocalparallel

Keyword for ParaDyn Version 4.1 only. Do not subdivide local contact surfaces for sliding interface

types 3, 5, 8, 9, and 10.

optslide

Keyword for ParaDyn Version 4.1 only. Program LINGRF will optimize sliding interfaces by

adding edges to the graph. These edges connect nearest neighbor segments in the sliding interface

which are assumed to be on opposite sides of the sliding interface. This is the default.

nooptslide

Keyword for ParaDyn Version 4.1 only. Do not optimize sliding interfaces by adding edges to the

graph.

optslideradius <n>

Keyword for ParaDyn Version 4.1 only. When adding edges between segments on a sliding

interface, do not add an edge if the proposed segment is connected to this segment within a distance

of n segments. Default is 3.

optslideweight <n>

Keyword for ParaDyn Version 4.1 only. When adding edges between segments on a sliding

interface, set the edge weight to n. Default is 5.

optslidebuckets <n>

Keyword for ParaDyn Version 4.1 only. To optimize the search for nearest neighbors in sliding

interfaces, we subdivide the search space into n buckets in each direction. Default is 20.

setcostmult <m.n>

Specify a floating point cost multiplier for special sets. This multiplier is a floating point number

of value greater than 1.0 to represent the extra computational burden imposed by DYNA3D objects

generating special sets (such as sliding interfaces). Default is 1.5.

ParaDyn User Manual Optional Keyword Arguments to DynaPart

61Version 2.1/4.1

maxsetfillfactor <m.n>

Maximum size for a segment of a separable set, in units of processor capacity. If dice is specified,

program CUTSEP will cut large separable sets into segments that are no larger than this. The value

for maxsetfillfactor should be between 0.1 and 1.0, and defaults to 0.9. This is ignored if keyword

nodice is used.

dice

Program CUTSEP will subdivide (dice) separable sets if they are too large for one processor.

Separable sets are generated by automatic contact sliding interfaces and also by local contact

sliding interfaces if the localparallel keyword is specified. If a separable set is too large to fit in

one processor, DynaPart will determine how many segments it needs to be cut into, and will cut it

optimally. This is the default.

nodice

Do not subdivide large separable sets, even if they are too large for one processor. If such large

separable sets are present, the resulting partition will have a suboptimal load balance.

metis306

At the heart of the partitioning software is a graph partitioning program called Metis, from the

University of Minnesota. The latest release of Metis is Version 4 or higher, but some users may

prefer partitions that are performed by Metis Version 3.0.6. Specifying keyword metis306 will

cause DynaPart to run Version 3.0.6 of pmetis or kmetis. If you do not specify metis306, DynaPart

will default to using the most recent version of Metis on the system.

The three metis keywords specifying a Metis program (kmetis, pmetis or skmetis) are mutually

exclusive. Only one may be specified. If none are specified, skmetis is used.

kmetis

Use kmetis rather than skmetis or pmetis. kmetis uses the k-way partitioning algorithm.

pmetis

Use pmetis rather than skmetis or kmetis. pmetis uses the recursive partitioning algorithm. This is

the default if metis306 is specified.

skmetis

ParaDyn User Manual Optional Keyword Arguments to DynaPart

62Version 2.1/4.1

Use skmetis rather than kmetis or pmetis. skmetis runs several variations of the kmetis routine, then

selects the result having the best load balance. This option takes more time and memory to partition

than pmetis or kmetis do, but may result in a better partition. This is only available in Metis Version

4 and higher. This is the default unless metis306 is specified.

multiconstraint

Run multi-constraint Metis. Use at your own risk. This will result in more time spent running

Metis, and is only available if metis306 is not specified. Multi-constraint Metis may produce a

better partition. The default is to run single-constraint Metis.

partitioncommcost <m.n>

skmetis computes the quality of a partition based on both load balance and the number of graph

edge cuts (which correspond to interprocessor communications). Keyword partitioncommcost is

used to specify a real number that is the multiplier of the number of edge cuts when computing the

partition score. It is normally between 0.0 and 1.0, but may be larger. Value 0.0 means edge cuts

are not considered in the score. Default is 0.5.

partitiontimes <n>

skmetis varies several parameters and computes partition(s) for each set of parameter values. For

a given set of parameters, partitions are computed partitiontimes times, with a different state of the

random number generator for each calculation. After all partitions with all values of parameters

have been computed, the partition with the best score is returned. Default is 4.

partitionverbosity <n>

The amount of reporting from skmetis can have one of three values:

partitionverbosity 1 = Minimum reporting. Report the statistics and the control

parameters that generated the best partition.

partitionverbosity 2 = Medium reporting. In addition to (1), for each value of

control parameters, report summary statistics (ranges of load

balances and edge cuts) for the partitions that were computed.

partitionverbosity = 3 3 = Full reporting. In addition to (2), report the statistics (load

 balance and edge cuts) for each partition that was calculated.

Default is 1.

plotnone

ParaDyn User Manual Optional Keyword Arguments to DynaPart

63Version 2.1/4.1

Do not generate a plot file of the partition. If plotnone is specified, no other plot options may be

specified.

plottaurus

Generate a Taurus format plot file of the partition. Some users may prefer this legacy file format.

plotmili

Generate a Mili format plot file of the partition. This is the preferred format, and is the default if

no plot keywords are supplied.

plotboth

Generate both Taurus and Mili format plot files of the partition. If plotboth is specified, no other

plot options may be specified. Specifying plotboth is equivalent to specifying both plottaurus and

plotmili.

Table 5. DynaPart Keyword Defaults and Overrides

Parameter Default Override with keyword

Faster repartition? Rerun all again

Segment-based contact? Yes nosegbased

Run AGGLOM? Version 2.1 only. No agglom

Subdivide local parallel contact
types 3, 5, 8, 9, and 10? Version 4.1
only.

Yes nolocalparallel

Add graph edges across sliding
interfaces? Version 4.1 only.

Yes nooptslide

Minimum segment count for adding
a graph edge. Version 4.1 only.

3 optslideradius <n>

Weight of each added graph edge.
Version 4.1 only.

5 optslideweight <n>

Number of search buckets in each
direction for finding graph edges to
add. Version 4.1 only.

20 optslidebuckets <n>

Set-cost multiplier for meta-verti-
ces.

1.5 setcostmult <m.n>

ParaDyn User Manual Using the dice/nodice and agglom/noagglom Keywords

64Version 2.1/4.1

1.3 Using the dice/nodice and agglom/noagglom Keywords

Keywords agglom/noagglom are available in ParaDyn Version 2.1 only. Version 4.1 of ParaDyn

eliminates the agglom/noagglom keywords and substitutes a set of keywords for optimizing the

subdividing of selected sliding interfaces. See the set of optslide keywords in Table 4.

Keywords dice/nodice are available in both ParaDyn Versions 2.1 and 4.1.

The following are guidelines to help the analyst decide whether to use the dice or nodice keywords

and the agglom or noagglom keywords.

• If not specified, the software presently takes the defaults of dice and noagglom. This is sub-

ject to change in future releases.

• The agglom keyword causes program AGGLOM to be run. AGGLOM is an experimental

program that computes the elements involved in automatic contact when segments are not

supplied in the input file. It also enhances the graph representing the model in a manner that

helps assure a partition with lower communication (a faster partition).

• Separable sets are generated by sliding interfaces of Type 12, 13 and 14 (automatic contact

sliding interfaces). In ParaDyn Version 4.1, sliding interface types 3, 5, 8, 9, and 10 are also

defined as separable sets if keyword localparallel is used.

Maximum separable-set chunk 0.9 maxsetfillfactor <m.n>

Subdivide large separable sets? Yes nodice

Metis version Latest metis306

Metis program skmetis kmetis, pmetis

Multiconstraint Metis? Single muliconstraint

skmetis communication cost 0.5 partitioncommcost <m.n>

skmetis # times each parameter set 4 partitiontimes <n>

skmetis verbosity 1 (low) partitionverbosity <n>

2 (medium), 3(full)

Plot file format Mili plotnone, plotboth

Table 5. DynaPart Keyword Defaults and Overrides

Parameter Default Override with keyword

ParaDyn User Manual Example DynaPart execution lines

65Version 2.1/4.1

• If there are no large separable sets present, simply default (do not specify) either of the key-

words. There is nothing to be gained by running AGGLOM (hence we'll accept the default

noagglom), and there is no harm in using dice (the default). The software run by the dice

option will have no effect in this situation.

• If there are one or more large separable sets present that correspond to automatic contact

sliding interfaces with segments not defined (segments zero or not defined in the input file),

then either:

a). Specify neither keyword (thus in effect supplying dice and noagglom). In this case, such

sliding interfaces will potentially be spread across all processors, and will run correctly

but with a high communication overhead (a slower-running partition), or

b). Specify keyword agglom and use dice (the default). This will run program AGGLOM

to compute the elements associated with the automatic contact, then will spread those

elements across as few processors as possible. This should result in a higher-perfor-

mance run.

• If there are one or more large separable sets present that correspond to automatic contact

sliding interfaces with segments defined (segments nonzero in the input file), then:

a). dice should be used to subdivide the large separable sets, (however dice is the default,

so does not need to be specified).

b). If agglom is not specified, such separable sets will partition satisfactorily.

c). If agglom is specified, the resulting partition may have less communication, hence run

more rapidly.

1.4 Example DynaPart execution lines

1. Partition input file bigmodel for 32 processors, using all the default parameters:

dynapart bigmodel 32

2. Partition bigmodel for 32 processors, and run AGGLOM:

dynapart bigmodel 32 agglom

3. Partition bigmodel for 32 processors, but do not subdivide large separable sets (such as

automatic contact sliding interfaces), even if they are too large for one processor:

dynapart bigmodel 32 nodice

ParaDyn User Manual Example DynaPart execution lines

66Version 2.1/4.1

4. Partition bigmodel for 32 processors. If separable sets are too large for one processor, subdivide

them as necessary:

dynapart bigmodel 32 dice

or

dynapart bigmodel 32

5. We discovered from the results of partitioning Example 4 that even though the largest special

element set was from a separable set, the load balance still was higher than desired. Now we want

to repartition, making the largest such set only 0.8 of a processor's worth:

dynapart bigmodel 32 dice maxsetfillfactor 0.8 again

6. Partition bigmodel for 32 processors, using kmetis Version 3.0.6:

dynapart bigmodel 32 metis306 kmetis

7. Partition bigmodel for 32 processors, using pmetis:

dynapart bigmodel 32 pmetis

8. Partition bigmodel for 32 processors, using multiconstraint skmetis:

dynapart bigmodel 32 multiconstraint

9. Partition bigmodel for 32 processors, but multiply the estimated compute load to compute

sliding interfaces and other special element sets by a factor of 1.83:

dynapart bigmodel 32 setcostmult 1.83

10. Partition bigmodel for 32 processors, and generate a Taurus format plot file:

dynapart bigmodel 32 plottaurus

11. Partition bigmodel for 32 processors, and generate both Taurus and Mili format plot files:

ParaDyn User Manual Example DynaPart execution lines

67Version 2.1/4.1

dynapart bigmodel 32 plottaurus plotmili

or

dynapart bigmodel 32 plotboth

12. Partition bigmodel for 32 processors, without using segments:

dynapart bigmodel 32 nosegbased

ParaDyn User Manual DynaPart Log File

68Version 2.1/4.1

 APPENDIX 2. DynaPart Log File

This appendix provides more detailed description of the background processing in DynaPart. It is

intended to expand on the examples provided in Section 3.0.

Up-to-date information about the latest changes in DynaPart is available online in the standard

documentation directory. The files related to DynaPart in this directory are:

• HOW-TO-PARTITION: This provides instructions for running DynaPart, including a com-

plete list of keywords, their meanings, default values, and examples.

• FOR-GOOD-PARTITIONS: This lists the DYNA3D objects which constrain partitioning,

and how to interpret DynaPart log files.

• PARTITION-FILE-FORMAT: This file documents changes to the partition file format.

2.1 DynaPart Log File

A complete log file from a DynaPart execution is shown below. The two statistics of interest to the

analysts running the problem are highlighted with underlined, bold text. These statistics are 1) the

maximum number of processors (partitions) for good computational load balance for contact and

other special options printed by program reducegrf and 2) the compuational load balance printed

by program skmetis. The programs run by the DynaPart script depend on the mesh and boundary

conditions for the specific problem being partitioned, as explained in APPENDIX 3. The programs

executed in DynaPart for this particular problem are highlighted with double-underlined text.

The first part of the log file includes the following items:

• The DynaPart options selected either by default or from keywords specified on the execu-

tion line. See Appendix 1 for details about keywords.

• The file extensions for files generated during a partitioning. The files generated by Dyna-

Part use the input file name as a root name and use an extension for each type of file gener-

ated during the partitioning process.

• Statistics and other output generated by the programs run in the DynaPart script.

ParaDyn User Manual DynaPart Log File

69Version 2.1/4.1

This is followed by the output from each of the programs executed by DynaPart. DynaPart was run

was run with the following execution line and generated a log file df8m3.log.8:

dynapart df8m3 8 | tee df8m3.log.8

DynaPart Log File for problem df8m3

Partitioning df8m3 for 8 processors.

DynaPart options:
 Use segments where appropriate to generate Special Element file.
 Do NOT run AGGLOM.
 Subdivide large separable sets (e.g. autocontact sliding interfaces).
 Make each piece no larger than 0.9 of a processor's worth.
 Use current default version of skmetis.
 Use single-constraint skmetis.
 Cost of an edge cut by skmetis is 0.5.
 Run skmetis 4 times for each parameter set.
 Multiply cost of sets (e.g. sliding interfaces) by 1.5.
 Write a Mili format plot file.

This script executes the software in the following order:
 SNPGEN - Generates sets of special nodal points, segments,
 set types, and free format keyword sections.
 SELSETS - Selects the ganged sets from the SNPGEN output
 DUALGEN - Generates a dual graph file, special elements (SE) file
 enhanced segment file, vertex weight file and AGGLOM files.
 SETCOST - Computes cost of each SE set
 AGGLOM - Adds edges to the graph and elements to the SE file
 CUTSEP - Cuts oversized separable sets
 EXTGRF - Extracts subgraphs from a graph
 CTS - Converts a color file and its new-to-old map to a SE file
 TRANSCLOSE - Transitively closes the ganged special elements
 AETS - Assigns special elements to disjoint sets
 REDUCEGRF - Reduces the graph by reducing SE sets to a meta-element
 SKMETIS - Partitions the reduced graph, produces a color file
 EXPANDCOL - Expands the color file to include all original elements
 SETCOL - Specifies color for all special element sets
 SELSETS - Selects the ganged and unganged sets from the SNPGEN output
 SELCOLS - Selects colors for ganged and unganged sets from SNPGEN
 PFGEN - Generates a partition file

Internal and output file extensions:
 .snp Special Nodal Points (SNP) file (from snpgen)
 .seg Segment file (from snpgen)
 .sst Special Sets Type file (from snpgen)
 .ssff Special Sets Free-Format file (from snpgen)
 .nsnp Number of Special Nodal Points sets (from snpgen)
 .gsnp Ganged Special Nodal Points file (from selsets)
 .grforig Dual graph file (from dualgen)
 .se Special Element (SE) file (from dualgen)

ParaDyn User Manual DynaPart Log File

70Version 2.1/4.1

 .eseg Enhanced segment file (from dualgen)
 .vwt Vertex weight file (from dualgen)
 .edb Element database file (from dualgen)
 .ndb Node database file (from dualgen)
 .secost Special element set cost file (from setcost)
 .grfee Graph file with additional edges (from agglom)
 .seee SE set with extra elements file (from agglom)
 .sew Special element set weight file (from agglom)
 .seeecost SE set with extra elements cost file (from setcost)
 .bigsep Oversized separable SE sets (from cutsep)
 .grfsep<M> Subgraph of vertices from big SE set <M> (from extgrf)
 .grfsep<M>.part.<N> Local color file (from metis) for big SE set (metis)
 .secut<M> SE file of big SE set <M> after cutting (from cts)
 .sesep SE file after big separables cut (from cutsep)
 .sstsep Special Set Types file after cutting (from cutsep)
 .nosesep New-Old Special Element set mapping (from cutsep)
 .setcg Special Elements Transitively Closed Gang file
 (from transclose)
 .ontcgs Old-New TransClosed Gang Set mapping file
 (from transclose)
 .dse Disjoint Special Elements file (from aets)
 .onses Old-New Special Element Set mapping file (from aets)
 .grfred Reduced Graph file (from reducegrf)
 .one Old-New Element mapping file (from reducegrf)
 .grfred.part.<N> Local color file (from metis)
 .part.<N> Global color file (from expandcol)
 .snscol Special Nodal Set Color file (from setcol)
 .uggsnp SNP file from unganged and ganged only (from selsets)
 .uggsnscol Color file for SNP sets from unganged/ganged only
 (from selcols)
 .<N> Partition file (from pfgen)
 parplt Taurus-format partition plot file (from pfgen)
 parpltA Mili-format partition plot file (from pfgen)

Thu Nov 6 12:09:00 PST 2003

Running SNPGEN

 **** SNPGEN - Generate a Special Nodal Points file ****
 Version of 9-Apr-2002

 DIPOLE FACADE 8 (ppp wes-ssa)

 << Starting to read the Dyna3d input file.

 Number of materials: 7
 Number of nodal points: 157331
 Number of 8-node hexagonal elements: 142369
 Number of 2-node beam elements: 9646
 Number of 4-node shell elements: 0
 Number of 8-node thick-shell elements: 0

 >> Finished reading the Dyna3d input file.

ParaDyn User Manual DynaPart Log File

71Version 2.1/4.1

 -- Starting to sort the special nodal points lists.

 ++ Finished sorting the special nodal points lists.

 -- Starting to write the special nodal points output file.

 ++ Finished writing the special nodal points output file.

 -- Starting to write the segment output file.

 ++ Finished writing the segment output file.

 -- Starting to write the set type output file.

 ++ Finished writing the set type output file.

 There were:
 10 Special Nodal Point sets. The longest set contained
 2208 nodal points, and all sets combined contained a total of
 12690 nodal points.
 There were:
 10 segment sets. The longest set contained
 2046 segments, and all sets combined contained a total of
 13938 segments.
1.32u 0.12s 0:08 17% 0+7k 3329+98io 146pf+0w

Running SELSETS

 **** SELSETS - Select sets of the specified type(s) ****
 Version of 1-Jul-2002

 Selecting sets of type 2.

 << Starting to read the sets input file

 >> Finished reading the sets input file

 << Starting to read the set types input file

 >> Finished reading the set types input file

 -- Starting to write the selected sets output file

 ++ Finished writing the selected sets output file

 There were:
 6 selected sets. The longest set contained
 1998 elements, and all sets combined contained a total of
 5661 elements.
0.02u 0.00s 0:00 13% 0+3k 10+8io 2pf+0w

Running DUALGEN

 **** DUALGEN - Generate a dual-mesh graph file ****

ParaDyn User Manual DynaPart Log File

72Version 2.1/4.1

 Version of 11-Jul-2002

 DIPOLE FACADE 8 (ppp wes-ssa)

 << Starting to read the Dyna3d input file.

 Number of materials: 7
 Number of nodal points: 157331
 Number of 8-node hexagonal elements: 142369
 Number of 2-node beam elements: 9646
 Number of 4-node shell elements: 0
 Number of 8-node thick-shell elements: 0

 >> Finished reading the Dyna3d input file.

 -- Starting to generate the node-to-element connectivity array.

 ++ Finished generating the node-to-element connectivity array.

 -- Starting to generate Special Element and enhanced segment files.

 These Special Element sets DO share some elements.
 You should run TRANSCLOSE to combine SE sets having shared elements.

 ++ Finished generating Special Element and enhanced segment files.

 -- Starting to generate the element-to-element connectivity array.

 ++ Finished generating the element-to-element connectivity array.

 -- Starting to generate the dual-mesh graph file.

 Min elem cost at elem 1 orig cost 1.00 scaled cost 1.
 Max elem cost at elem 1 orig cost 1.00 scaled cost 1.

 Total cost of the unscaled graph was 152015.
 Total cost of the scaled graph is 152015.

 ++ Finished generating the dual-mesh graph file.

 -- Starting to generate the vertex weight file.

 ++ Finished generating the vertex weight file.

 -- Starting to generate the vertex geometry file.

 ++ Finished generating the vertex geometry file.

 Maximum element connectivity of 56 seen at element 131795.

 .. Writing element data to database file -> df8m3.edb

 .. Writing node data to database file -> df8m3.ndb
16.83u 3.83s 0:27 75% 0+148k 5053+6831io 17pf+0w

ParaDyn User Manual DynaPart Log File

73Version 2.1/4.1

Running SETCOST

 **** SETCOST - Compute costs of sets ****
 Version of 20-Feb-2002

 << Starting to read the special element set input file

 >> Finished reading the special element set input file

 << Starting to read the element weight input file

 >> Finished reading the element weight input file

 -- Starting to write the set costs output file

 ++ Finished writing the set cost output file

 Set cost statistics:
 Number of sets: 10
 Cost of most costly set: 4248
 Total cost of all sets: 17608
 Total cost of all vertices in graph: 152015
0.38u 0.00s 0:00 90% 0+8k 9+2io 1pf+0w

Running CUTSEP

 CUTSEP will subdivide large separable sets by an additional factor of 1.

 **** CUTSEP - Find and subdivide the oversize separable sets ****
 Version of 20-Feb-2002

 << Starting to read the special element set input file

 >> Finished reading the special element set input file

 << Starting to read the sets cost input file

 >> Finished reading the sets cost input file

 << Starting to read the sets type input file

 >> Finished reading the sets type input file

 Cost of entire graph is 152015.
 Number of special elements before being made disjoint is 17608.
 Estimated (probably high) cost of reduced graph is 160819.
 Number of processors is 8.
 Set cost multiplier is 1.50.
 Maximum set fill factor is 0.90.
 Therefore, cost of largest permissible separable set is 12061.

 -- Starting to write the new-to-old set mapping output file

ParaDyn User Manual DynaPart Log File

74Version 2.1/4.1

 There were no oversized separable sets.
 Input special element (SE) file has been copied to output SE file.
 Input special sets type (SST) file has been copied to output SST file.
 The new-to-old set mapping is the identity mapping.

 ++ Finished writing the new-to-old set mapping output file

0.03u 0.02s 0:00 29% 0+2k 15+28io 3pf+0w

Running TRANSCLOSE

 **** TRANSCLOSE- Perform transitive closure on ganged sets ****
 Version of 17-Jan-2001

 << Starting to read the sets input file

 >> Finished reading the sets input file

 There were a total of 17608 values read, in 10 sets.

 << Starting to read the set type input file

 >> Finished reading the set type input file

 -- Starting to calculate transitively closed ganged sets

 ++ Finished calculating transitively closed ganged sets

 -- Starting to write the set trans-closed gang output file

 ++ Finished writing the set trans-closed gang output file

 -- Starting to write the old-to-new set mapping output file

 ++ Finished writing the old-to-new set mapping output file

 There were:
 10 output sets. The longest set contained
 8882 elements, and all sets combined contained a total of
 16508 elements.

0.04u 0.01s 0:00 22% 0+12k 39+28io 4pf+0w

Running AETS

 **** AETS - Assign elements to sets ****
 Version of 12-Feb-2002

 << Starting to read the transitively closed gang set input file

 >> Finished reading the transitively closed gang set input file

 << Starting to read the sets type input file

ParaDyn User Manual DynaPart Log File

75Version 2.1/4.1

 >> Finished reading the sets type input file

 << Starting to read the old-to-new set mapping input file

 >> Finished reading the old-to-new set mapping input file

 -- Starting to write the disjoint sets output file

 ++ Finished writing the disjoint sets output file

 -- Starting to write the old-to-new set mapping output file

 ++ Finished writing the old-to-new set mapping output file

 There were:
 4 disjoint sets. The longest set contained
 3941 elements, and all sets combined contained a total of
 15764 elements.
0.04u 0.00s 0:00 33% 0+7k 15+21io 3pf+0w

Running REDUCEGRF

 **** REDUCEGRF - Reduce a graph file ****
 Version of 24-Jun-2002

 << Starting to read the special element input file

 >> Finished reading the special element input file

 << Starting to read the graph input file

 >> Finished reading the graph input file

 There were 43851 connections between meta-vertices.

 -- Starting to sort each row of the output graph

 ++ Finished sorting each row of the output graph

 -- Starting to write the graph output file

 Output graph statistics:
 Sum of vertex weights: 159899
 Largest vertex weight: 5912
 at reduced vertex: 136252
 which represents special element set: 1
 Max # partitions for good load balance: 27

 ++ Finished writing the graph output file

18.43u 0.33s 0:20 91% 0+286k 14+3723io 3pf+0w

Running SKMETIS
Completed 1 / 4 of the iterations.

ParaDyn User Manual DynaPart Log File

76Version 2.1/4.1

Completed 2 / 4 of the iterations.
Completed 3 / 4 of the iterations.
Completed 4 / 4 of the iterations.

**
 SKMETIS 4.0.1 Copyright 2001, 2002 The Regents of the
 University of California. All rights reserved. Based on
 METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota

Graph Information ---
 Name: df8m3.grfred, #Vertices: 136255, #Edges: 1646889, #Parts: 8.
 Total vertex weight: 159899.

Scoring and Calculation Information -------------------------------------
 Edge cut factor: 0.500, Number of iterations per parameter set: 4,
 Total number of iterations: 48.

K-way Partitioning... ---
 This best iteration is using options [0 to 4]: 1 4 1 1 0, offset: 0.
 Edge cuts: 279326, Load balance: 1.03035, Score: 1.90380.

Timing Information (Seconds) --
 I/O: 1.817
 Partitioning: 35.432 (SKMETIS time)
 Total: 37.365
 Note: If the time was greater than 35 minutes, ignore the above times.
**
37.08u 0.29s 0:39 95% 0+783k 38+34io 10pf+0w

Running EXPANDCOL

 **** EXPANDCOL - Expand a color file ****
 Version of 15-Jan-1999

 << Starting to read the global-local elements input file

 >> Finished reading the global-local elements input file

 << Starting to read the reduced color input file

 >> Finished reading the reduced color input file

 -- Starting to write the color output file

 ++ Finished writing the color output file

0.72u 0.00s 0:00 87% 0+10k 8+39io 2pf+0w

Running SETCOL

 **** SETCOL - Generate a color file for the special sets ****
 Version of 1-Jul-2002

 << Starting to read the old-to-new set mapping input file

ParaDyn User Manual DynaPart Log File

77Version 2.1/4.1

 >> Finished reading the old-to-new set mapping input file

 << Starting to read the reduced graph color input file

 >> Finished reading the reduced graph color input file

 -- Starting to write the set color output file

 ++ Finished writing the set color output file

0.13u 0.00s 0:00 72% 0+2k 7+1io 2pf+0w

Running SELSETS

 **** SELSETS - Select sets of the specified type(s) ****
 Version of 1-Jul-2002

 Selecting sets of type 1 or 2.

 << Starting to read the sets input file

 >> Finished reading the sets input file

 << Starting to read the set types input file

 >> Finished reading the set types input file

 -- Starting to write the selected sets output file

 ++ Finished writing the selected sets output file

 There were:
 10 selected sets. The longest set contained
 2208 elements, and all sets combined contained a total of
 12690 elements.
0.03u 0.00s 0:00 60% 0+2k 1+16io 0pf+0w

Running SELCOLS

 **** SELCOLS - Select colors for sets of the specified type(s) ****
 Version of 8-Jul-2002

 Selecting sets of type 1 or 2.

 << Starting to read the set types input file

 >> Finished reading the set types input file

 << Starting to read the set colors input file

 >> Finished reading the set colors input file

 -- Starting to write the set colors output file

ParaDyn User Manual DynaPart Log File

78Version 2.1/4.1

 ++ Finished writing the set colors output file

 There were 10 selected colors.
0.00u 0.00s 0:00 0% 0+0k 8+1io 0pf+0w

Running PFGEN

 **** PFGEN - Generate a partition-assignment file ****
 Version of 9-Apr-2002

 DIPOLE FACADE 8 (ppp wes-ssa)

 << Starting to read the Dyna3d input file.

 Number of materials: 7
 Number of nodal points: 157331
 Number of 8-node hexagonal elements: 142369
 Number of 2-node beam elements: 9646
 Number of 4-node shell elements: 0
 Number of 8-node thick-shell elements: 0

 >> Finished reading the Dyna3d input file.

 << Starting to read the partition-color file.

 Number of processors in the color file: 8

 >> Finished reading the partition-color file.

 << Starting to read the gang node set file

 >> Finished reading the gang node set file

 << Starting to read the pre-assigned node set file.

 >> Finished reading the pre-assigned node set file.

 -- Starting to generate the partition-assignment file.

 There are no unassigned nodes to assign.

 Number of Number of
 Node Adjacent
 Communications Processors

 Average per processor: 7844.0 4.2
 Max on any processor: 18277 7
 Total on all processors: 62752 34

 ++ Finished generating the partition-assignment file.

 -- Starting to generate the Mili plot file.

ParaDyn User Manual DynaPart Log File

79Version 2.1/4.1

 ++ Finished generating the Mili plot file.

5.06u 0.37s 0:06 77% 0+45k 580+1364io 14pf+0w

Thu Nov 6 12:10:44 PST 2003
Partition file name is df8m3.8.
All done

ParaDyn User Manual Special Node and Element Sets

80Version 2.1/4.1

 APPENDIX 3. Generating Good Partitions with DynaPart

Decisions made during the development of a DYNA3D/ParaDyn model can affect the scalability

and efficiency of the simulation. The following are some insights to give the analyst an idea of the

scalability of a ParaDyn job, and some tips on how to improve that scalability.

3.1 Special Node and Element Sets

The partitioning of a DYNA3D/ParaDyn model is constrained by boundary conditions and other

options contained in that model. These boundary condtions and options will force nodes and

elements to be assigned to a single processor rather than being divided across more than one

processor. Nodes that need to be kept together are assigned to Special Nodal Point (SNP) sets. The

following DYNA3D objects each generate an SNP set:

Symmetry planes with failure

Follower forces

Nodal constraints

Sliding interface definitions 1-10 for Version 2.1

Sliding interface definitions 1, 2, 4, 6, and 7 in Version 4.1

Tie-breaking shell slidelines

Tied node sets with failure

Rigid body joints

Shell-solid interfaces

Discrete springs and dampers

One-dimensional slidelines

Associated with each of the Special Nodal Point sets is a Special Element (SE) set. The SE set

consists of all elements that contain one or more nodes in the corresponding SNP set.

All elements in a SE set must be assigned to a single processor. Non-overlapping SE sets can be

assigned to different processors, but any one SE set must reside entirely in one processor. This

means that the relative size of the largest SE set limits the maximum number of processors that can

produce an efficient parallel simulation. For example, if the entire job contains 200000 elements,

and the largest SE set contains 20000 elements, then the largest number of processors that the job

can be well-partitioned for is ten. If the analyst partitions for more than ten processors, there will

ParaDyn User Manual Statistical results in the DynaPart Log file

81Version 2.1/4.1

be no significant speedup over the ten-processor partition. Since one processor will contain the

20000 elements of the SE set, it will have more computation to do, and the other processors will

be forced to periodically wait for the processor handling 20000 elements to complete its

calculations.

In most models, if there are large SNP sets, they are due to sliding interfaces. To reduce the size

of the largest SNP set, try to reduce the size of the largest sliding interfaces.

3.2 Statistical results in the DynaPart Log file

The statistics for an entire model and for the largest SE sets can be obtained from the log of a

DynaPart run. There are several programs that are run by the DynaPart partitioning script, and

these programs give job statistics during the partitioning operation. The following statistics for the

entire job can be obtained from the screen output from the DynaPart module SNPGEN:

Number of materials: 7
Number of nodal points: 157331
Number of 8-node hexagonal elements: 142369
Number of 2-node beam elements: 9646
Number of 4-node shell elements: 0
Number of 8-node thick-shell elements: 0

There were:
 10 Special Nodal Point sets. The longest set contained
 2208 nodal points, and all sets combined contained a total of
 12690 nodal points.
 There were:
 10 segment sets. The longest set contained
 2046 segments, and all sets combined contained a total of
 13938 segments.

If there are no SNP sets, SNPGEN will tell you, and the job should partition well for any number

of processors. In most problems, there are SNP sets, and their size will determine the optimal

number of processors for an efficient partition.

If there were one or more SNP sets, then the statistics for the Special Element sets can be

determined from the screen output from the DynaPart module AETS:

There were:
 4 disjoint sets. The longest set contained
 3941 elements, and all sets combined contained a total of

ParaDyn User Manual Statistical results in the DynaPart Log file

82Version 2.1/4.1

 15764 elements.

After the partitioning is completed, the above statistics on the disjoint sets can also be determined

by looking at the end of the .dse file. If the name of your job is bigmodel, then type the following

command at the UNIX prompt:

tail bigmodel.dse

Program REDUCEGRF generates a graph representing the model, and combines all the elements

in a Special Element set into a single vertex in the graph. The weight of this vertex represents the

computational load for that set. The weight of the largest vertex will determine how many

processors the model can be partitioned for while maintaining a good load balance. REDUCEGRF

generates output to the user's window that tells the maximum number of processors this job can be

partitioned for with a possibility of having a good load balance:

Output graph statistics:
 Sum of vertex weights: 159899
 Largest vertex weight: 5912
 at reduced vertex: 136252
 which represents special element set: 1
 Max # partitions for good load balance: 27

In this case we partitioned for only 8 processors, so we should get a well load-balanced partition.

The Computational Load Balance statistics are obtained from Metis:

Edge cuts: 279326, Load balance: 1.03035, Score: 1.90380.

A balance of 1.00 is a perfect load balance (each processor nominally has the same amount of

computation to do at each time step). In this case we obtained a load balance of 1.01, which is a

good load balance.

The Communication Load statistics are given by DynaPart module PFGEN:

Number of Number of
 Node Adjacent
 Communications Processors

 Average per processor: 7844.0 4.2
 Max on any processor: 18277 7
 Total on all processors: 62752 34

ParaDyn User Manual Statistical results in the DynaPart Log file

83Version 2.1/4.1

At each time step, there are a total of 62752 node communications that must take
place. The average number of node communications (per processor) is 7844, and
the processor needing to do the most communication needs to communicate 18277
nodes.

The performance is best when the number of communications (both the maximum on any

processor and the total on all processors) is minimized. This is useful when comparing the

efficiency of two different partitions of a model.

ParaDyn User Manual

84Version 2.1/4.1

Manual Change History

MANUAL CHANGE HISTORY

Version 2.1/4.1

February 4, 2004

• Extensive rewrite of the manual to upgrade it from the manual published June, 2000.

• Provided information about the parallel visualization tools, VisIt and EnSight, through-

out the manual.

• Discussions on parallel contact algorithms rewritten and updated in Section 2.4 on Scal-

able Parallel Contact Algorithms.

• Provided details on parallel automatic contact algorithms in Section 2.4.2.

• Added Section 2.4.3 and 4.1 on Modeling Tips for Efficient Parallel Contact.

• Added Section 2.6 on Testing and Evaluating Model Scalability.

• Revised and added paragraphs in Section 3.1 to include the parallel visualization tools.

• Added Section 3.2 to provide path variables for accessing the ParaDyn code and this

documentation.

• Rewrote Section 3.3 on Partitioning a Model. Added examples illustrating partitioning

models with and without contact.

• Updated Section 3.4 to add Mili database names and remove references to Taurus data-

bases.

• Added Section 3.6 on Running ParaDyn Interactively. This provides example ParaDyn

execution lines for several parallel computers using the utilities mpirun, prun, poe,

and srun.

• Added Section 3.7 on Running ParaDyn with Batch with an example script and pointed

to utilities for running under batch systems at the Livermore Computer Center.

• Updated Section 3.8 to focus on Mili databases (Section 3.8.1) and the three graphics

post-processors:

GRIZ4 in Section 3.8.2

VisIt in Section 3.8.3

EnSight in Section 3.8.4

• Updated Section 3.9 on Steps for Running ParaDyn. Provided a summary of steps in

table form that can be printed as a reminder sheet.

• Deleted Section 4.1 on Static Initialization and Dynamic Analysis.

• Added three Appendixes with detailed documentation for DynaPart.

• Added this Manual Change History.

	ParaDyn User Manual
	ABSTRACT
	PREFACE
	TABLE OF CONTENTS
	1.0�� BACKGROUND
	2.0�� OVERVIEW OF PARADYN
	2.1 Introduction
	2.2 The Parallel Finite-Element Model
	2.3 Parallel Performance and Scalability
	2.4 Scalable Parallel Contact Algorithms
	2.4.1 Parallel Local Contact
	2.4.2 Parallel Automatic Contact
	2.4.3 Modeling Tips for Efficient Parallel Contact

	2.5 Boundary Conditions and Constraints
	2.6 Testing and Evaluating Model Scalability
	2.6.1 Speedup Studies and Scalability Limit
	2.6.2 Using Statistics from the Partitioning Software

	3.0�� ANALYSIS WITH PARADYN
	3.1 The ParaDyn Software Suite
	3.2 PATH Variable for Accessing ParaDyn Software
	3.3 Partitioning a Model
	3.4 File Name Sequences
	3.5 ParaDyn Execute Line Options
	3.6 Running ParaDyn Interactively
	3.6.1 Running ParaDyn on an IBM system
	3.6.2 Running ParaDyn on an Intel Linux Cluster
	3.6.3 Running ParaDyn on an SGI Origin
	3.6.4 Running ParaDyn on a Compaq at LANL

	3.7 Running ParaDyn with Batch
	3.8 Visualizing ParaDyn Results
	3.8.1 Selecting Mili Databases with Keyword Input
	3.8.2 Combining Parallel Databases and Visualizing Results with GRIZ4
	3.8.3 Visualizing Results with VisIt
	3.8.4 Visualizing Results with EnSight

	3.9 A Summary of Steps for Running ParaDyn Simulations

	4.0�� INPUT FOR PARALLEL SIMULATIONS
	4.1 Tips for Designing Models with Efficient Parallel Contact
	4.2 The NIKE–DYNA Link File
	4.3 Multiple Versions of Running Restart Files
	4.4 Nodal Force Output

	5.0�� FUTURE ENHANCEMENTS
	REFERENCES
	APPENDIX 1. DynaPart Command Line and Keywords
	APPENDIX 2. DynaPart Log File
	APPENDIX 3. Generating Good Partitions with DynaPart
	MANUAL CHANGE HISTORY

